A routine operational backscattering coefficient regrouping algorithm for a HY-2A scatterometer

ZOU Juhong LIN Mingsen ZOU Bin GUO Maohua ZHANG Yi

邹巨洪, 林明森, 邹斌, 郭茂华, 张毅. 海洋二号卫星微波散射计后向散射系数业务化面元匹配算法[J]. 海洋学报英文版, 2018, 37(3): 111-116. doi: 10.1007/s13131-018-1204-6
引用本文: 邹巨洪, 林明森, 邹斌, 郭茂华, 张毅. 海洋二号卫星微波散射计后向散射系数业务化面元匹配算法[J]. 海洋学报英文版, 2018, 37(3): 111-116. doi: 10.1007/s13131-018-1204-6
ZOU Juhong, LIN Mingsen, ZOU Bin, GUO Maohua, ZHANG Yi. A routine operational backscattering coefficient regrouping algorithm for a HY-2A scatterometer[J]. Acta Oceanologica Sinica, 2018, 37(3): 111-116. doi: 10.1007/s13131-018-1204-6
Citation: ZOU Juhong, LIN Mingsen, ZOU Bin, GUO Maohua, ZHANG Yi. A routine operational backscattering coefficient regrouping algorithm for a HY-2A scatterometer[J]. Acta Oceanologica Sinica, 2018, 37(3): 111-116. doi: 10.1007/s13131-018-1204-6

海洋二号卫星微波散射计后向散射系数业务化面元匹配算法

doi: 10.1007/s13131-018-1204-6
基金项目: The National High Technology Research and Development Program (863 Program) of China under contract No. 2013BAD13B01; the National Natural Science Foundation of China under contract No. 41576177.

A routine operational backscattering coefficient regrouping algorithm for a HY-2A scatterometer

  • 摘要: 本文提出了一种可业务化运行的海洋二号卫星散射计面元匹配方法,该算法主要用于将按时序排列的后向散射系数及相关参数投影到相应风矢量单元。面元匹配方法主要包括地面网格划分和后向散射系数观测结果重采样两个关键步骤。为简化计算,本文采用了以星下点轨迹为中心,以顺轨向及交轨向为坐标轴的地面网格划分方式。在重采样过程中,本文提出了一种“三点标定”重采样方法,利用观测脉冲的地面足印中心,星下点轨迹的起点,以及过地面足印中心做星下点轨迹垂线的交点,三点形成的直角三角形来计算每个后向散射系数观测结果在地面网格中对应的坐标。该直角三角形的两直角边分别对应观测脉冲在顺轨向和交轨向的坐标。同时,为减少由于星下点数据空间分布不连续引起的面元匹配误差,在采用三点标定法进行重采样之前,首先对星下点时空分布不连续的区域对时间插值,然后以时间为坐标,对星下点经度、纬度分别进行内插。对风矢量面元位置分布和风矢量反演精度等分析表明,本文提出的面元匹配算法,可在满足高质量海面风场反演的要求。
  • Dunbar R S, Hsiao S V, Kim Y J. 2001. Science algorithm specification for SeaWinds on QuikSCAT and SeaWinds on ADEOS-Ⅱ. Pasadena, California: Jet Propulsion Laboratory, 209-239
    EUMETSAT. 2015. ASCAT Product Guide. EUM/OPS-EPS/MAN/04/0028, Eumetsat-Allee 1, D-64295 Darmstadt. Germany: EUMETSAT, 31
    Lecomte P. 1998. ERS scatterometer instrument and the on-ground processing of its data. In: Proceedings of a Joint ESA-Eumetsat Workshop on Emerging Scatterometer Applications-From Research to Operations. The Netherlands: ESTEC
    Naderi F M, Freilich M H, Long D G. 1991. Spaceborne radar measurement of wind velocity over the ocean-An overview of the NSCAT scatterometer system. Proceedings of the IEEE, 79(6): 850-866
    Stoffelen A, de Vries J, Voorrips A. 2001. Towards the real-time use of QuikSCAT winds. Project Report. de Bilt, the Netherlands: KNMI
    Verhoef A, Portabella M, Stoffelen A. 2012. High-resolution ASCAT scatterometer winds near the coast. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2481-2487
    Vogelzang J. 2007. Two dimensional variational ambiguity removal (2DVAR). NWP SAF NWPSAF-KN-TR-004. http://www.eumetsat.int [2013-09-20/2015-01-01]
    Vogelzang J, Stoffelen A, Verhoef A, et al. 2011. On the quality of high-resolution scatterometer winds. Journal of Geophysical Research, 116(C10): C10033, doi: 10.1029/2010JC006640
    Zhang Yunhua, Jiang Jingshan, Zhang Xiangkun, et al. 2005. SZ-4 scatterometer mode of multimode microwave sensors (CNSCAT/M3RS). Remote Sensing Technology and Application (in Chinese), 20(1): 58-63
    Zou Juhong, Xie Xuetong, Zhang Yi, et al. 2014. Wind retrieval processing for HY-2A microwave scatterometer. In: 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Quebec City, QC: IEEE, 5160-5163
  • 加载中
计量
  • 文章访问数:  794
  • HTML全文浏览量:  29
  • PDF下载量:  875
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-24

目录

    /

    返回文章
    返回