Comparison of two Bayesian-point-estimation methods in multiple-source localization

LI Qianqian MING Pingshou YANG Fanlin ZHANG Kai WU Ziyin

李倩倩, 明平寿, 阳凡林, 张凯, 吴自银. 两种基于贝叶斯点估计理论的多声源定位方法研究[J]. 海洋学报英文版, 2018, 37(6): 11-17. doi: 10.1007/s13131-018-1215-3
引用本文: 李倩倩, 明平寿, 阳凡林, 张凯, 吴自银. 两种基于贝叶斯点估计理论的多声源定位方法研究[J]. 海洋学报英文版, 2018, 37(6): 11-17. doi: 10.1007/s13131-018-1215-3
LI Qianqian, MING Pingshou, YANG Fanlin, ZHANG Kai, WU Ziyin. Comparison of two Bayesian-point-estimation methods in multiple-source localization[J]. Acta Oceanologica Sinica, 2018, 37(6): 11-17. doi: 10.1007/s13131-018-1215-3
Citation: LI Qianqian, MING Pingshou, YANG Fanlin, ZHANG Kai, WU Ziyin. Comparison of two Bayesian-point-estimation methods in multiple-source localization[J]. Acta Oceanologica Sinica, 2018, 37(6): 11-17. doi: 10.1007/s13131-018-1215-3

两种基于贝叶斯点估计理论的多声源定位方法研究

doi: 10.1007/s13131-018-1215-3
基金项目: The National Natural Science Foundation of China under contract No. 11704225; the Shandong Provincial Natural Science Foundation under contract No. ZR2016AQ23; the State Key Laboratory of Acoustics of Chinese Academy of Sciences under contract No. SKLA201704; the National Programe on Global Change and Air-Sea Interaction.

Comparison of two Bayesian-point-estimation methods in multiple-source localization

  • 摘要: 海洋环境参数失配是制约匹配场定位性能的主要因素之一。为了克服环境失配,本文基于贝叶斯理论,将环境参数与声源的距离和深度一起作为未知量进行反演。然而在进行多声源定位时,反演参数的维数几何增长,极大地增加了反演问题的复杂性和计算量。为此本文将声源强度和噪声方差表示成其极大似然估计值,从而将这些参数进行隐式采样,大大降低了反演的维数和难度。文章比较了两种贝叶斯点估计方法,最大后验概率密度方法和最大边缘后验概率密度方法。最大后验概率密度方法的解是令后验概率密度取得最大值的参数组合,可以利用优化算法快速获得。最大边缘后验概率密度法将其他参数积分,得到目标参数的一维边缘概率分布,分布的最大值为反演结果。该方法得到最优估计值的同时可以获取参数估计的不确定信息。在环境参数和声源参数都未知的情况下,利用蒙特卡洛法在不同信噪比情况下对两种声源定位方法进行分析,实验结果表明:(1)对于敏感参数,如声源距离、水深和海水声速,最大边缘后验概率密度法比最大边缘后验概率密度方法的性能好。(2)对于较不敏感的参数,如海底声速、海底密度和海底声衰减,当信噪比较低时,最大边缘后验概率密度方法能较好地平滑噪声,从而比最大边缘后验概率密度法具有更好的性能。由于声源距离和深度是敏感参数,研究表明最大边缘后验概率密度法提供了一种在不确知环境下更可靠的多声源定位方法。
  • Bucker H P. 1976. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. The Journal of the Acoustical Society of America, 59(2):368-373
    Dosso S E, Wilmut M J. 2011. Bayesian multiple-source localization in an uncertain ocean environment. The Journal of the Acoustical Society of America, 129(6):3577-3589
    Gerstoft P, Mechlenbräuker C F. 1998. Ocean acoustic inversion with estimation of a posteriori probability distributions. The Journal of the Acoustical Society of America, 104(2):808-819
    Greening M V, Zakarauskas P, Dosso S E. 1997. Matched-field localization for multiple sources in an uncertain environment, with application to Arctic ambient noise. The Journal of the Acoustical Society of America, 101(6):3525-3538
    Li Qianqian, Zheng Bingxiang, Li Zhenglin. 2012. Bayesian source localization via multistep focalization in shallow water. AIP Conference Proceedings, 1495:603-610
    Li Qianqian. 2016. Bayesian tracking in an uncertain shallow water environment. Chinese Physics Letters, 33(3):034301
    Michalopoulou Z H. 2006. Multiple source localization using a maximum a posteriori Gibbs sampling approach. The Journal of the Acoustical Society of America, 120(5):2627-2634
    Nielson T B. 2005. Localization of multiple acoustic sources in the shallow ocean. The Journal of the Acoustical Society of America, 118(5):2944-2953
    Tolstoy A, Diachok O. 1991. Acoustic tomography via matched field processing. The Journal of the Acoustical Society of America, 89(3):1119-1127
  • 加载中
计量
  • 文章访问数:  804
  • HTML全文浏览量:  46
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-20
  • 修回日期:  2018-03-02

目录

    /

    返回文章
    返回