Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea

Zu Yongcan Sun Shuangwen Zhao Wei Li Peiliang Liu Baochao Fang Yue Samah Azizan Abu

祖永灿, 孙双文, 赵玮, 李培良, 刘宝超, 方越, SamahAzizanAbu. 南海中尺度涡温盐结构的季节特征及形成机制[J]. 海洋学报英文版, 2019, 38(4): 29-38. doi: 10.1007/s13131-018-1222-4
引用本文: 祖永灿, 孙双文, 赵玮, 李培良, 刘宝超, 方越, SamahAzizanAbu. 南海中尺度涡温盐结构的季节特征及形成机制[J]. 海洋学报英文版, 2019, 38(4): 29-38. doi: 10.1007/s13131-018-1222-4
Zu Yongcan, Sun Shuangwen, Zhao Wei, Li Peiliang, Liu Baochao, Fang Yue, Samah Azizan Abu. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 29-38. doi: 10.1007/s13131-018-1222-4
Citation: Zu Yongcan, Sun Shuangwen, Zhao Wei, Li Peiliang, Liu Baochao, Fang Yue, Samah Azizan Abu. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 29-38. doi: 10.1007/s13131-018-1222-4

南海中尺度涡温盐结构的季节特征及形成机制

doi: 10.1007/s13131-018-1222-4
基金项目: The National Key R&D Program of China under contract No. 2017YFC1405100; the National Natural Science Foundation of China under contract Nos 41576028, 41306032 and 41876030; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606405; the research fund from FIO-UM Joint Center of Marine Science and Technology.

Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea

  • 摘要: 本文利用最新的涡旋数据集和ARMOR3D数据,研究了南海中尺度涡温盐结构的季节特征及形成机制。合成分析的结果表明,在冬季,涡旋引起温度异常的水平分布在50米以浅表现为类似偶极型分布,而在50m以深则趋向于中心对称分布;在夏季,温度异常的水平分布均表现为中心对称的特征。涡旋引起盐度异常的水平分布也具有类似的季节特征,但是偶极型中的不对称性相对较弱。在垂向上,涡旋所致的温度异常表现为单层结构,而盐度异常则为三层结构。进一步的分析表明,涡旋所致温盐异常的垂向分布特征与背景温盐的垂向分层有关;而在50m以浅,温盐异常的水平分布的不对称特征主要由背景温盐场的水平平流所致。
  • Amores A, Melnichenko O, Maximenko N. 2017a. Coherent mesoscale eddies in the North Atlantic subtropical gyre:3-D structure and transport with application to the salinity maximum. Journal of Geophysical Research:Oceans, 122(1):23-41, doi: 10.1002/jgrc.v122.1
    Amores A, Monserrat S, Melnichenko O, et al. 2017b. On the shape of sea level anomaly signal on periphery of mesoscale ocean eddies. Geophysical Research Letters, 44(13):6926-6932, doi: 10.1002/2017GL073978
    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15):L15606
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216, doi: 10.1016/j.pocean.2011.01.002
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea:Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research:Oceans, 116(6):C06018
    Chen Gengxin, Wang Dongxiao, Dong Changming, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Reports, 5:17416, doi: 10.1038/srep17416
    Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5:3294, doi: 10.1038/ncomms4294
    Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2:150028, doi: 10.1038/sdata.2015.28
    Falkowski P G, Ziemann D, Kolber Z, et al. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature, 352(6330):55-58, doi: 10.1038/352055a0
    Fang Yue, Fang Guohong, Yu Kejun. 1996. ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters. Chinese Journal of Oceanology and Limnology, 14(4):357-366, doi: 10.1007/BF02850557
    Fang Guohong, Wang Gang, Fang Yue, et al. 2012. A review on the South China Sea western boundary current. Acta Oceanologica Sinica, 31(5):1-10, doi: 10.1007/s13131-012-0231-y
    Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research:Oceans, 120(11):7413-7449, doi: 10.1002/2015JC011047
    Gaube P, McGillicuddy D J Jr, Chelton D B, et al. 2014. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. Journal of Geophysical Research:Oceans, 119(12):8195-8220, doi: 10.1002/2014JC010111
    Guinehut S, Le Traon P Y, Larnicol G, et al. 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations. Journal of Marine Systems, 46(1-4):85-98
    Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5):845-857, doi: 10.5194/os-8-845-2012
    Hu Jianyu, Gan Jianping, Sun Zhenyu, et al. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research:Oceans, 116(5):C05016
    Hu Zifeng, Tan Yehui, Song Xingyu, et al. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring inter-monsoon period. Acta Oceanologica Sinica, 33(3):118-128, doi: 10.1007/s13131-014-0431-8
    Huang Bangqin, Hu Jun, Xu Hongzhou, et al. 2010. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 57(19-20):1792-1798
    Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual Review of Marine Science, 1:351-375, doi: 10.1146/annurev.marine.010908.163704
    Mason E, Pascual A, Gaube P, et al. 2017. Subregional characterization of mesoscale eddies across the Brazil-Malvinas confluence. Journal of Geophysical Research:Oceans, 122(4):3329-3357, doi: 10.1002/2016JC012611
    Mulet S, Rio M H, Mignot A, et al. 2012. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 77-80:70-81
    Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research:Oceans, 116(C5):C05002
    Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3):233-241
    Small R J, De Szoeke, Xie Shangping, et al. 2008. Air-sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3-4):274-319
    Sun Shuangwen, Fang Yue, Liu Baochao, et al. 2016. Coupling between SST and wind speed over mesoscale eddies in the South China Sea. Ocean Dynamics, 66(11):1467-1474, doi: 10.1007/s10236-016-0993-4
    Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6):925-935, doi: 10.1007/s10872-008-0076-3
    Wang Qiang, Zeng Lili, Zhou Weidong, et al. 2015. Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. Journal of Geophysical Research:Oceans, 120(1):517-532, doi: 10.1002/2014JC009814
    Wyrtki K. 1961. Physical Oceanography of the Southeast Asian Waters. UC San Diego:Scripps Institution of Oceanography, 144-182
    Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194):322-324, doi: 10.1126/science.1252418
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6:24349, doi: 10.1038/srep24349
    Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5):519-531, doi: 10.1007/s10236-013-0612-6
  • 加载中
计量
  • 文章访问数:  616
  • HTML全文浏览量:  57
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-08

目录

    /

    返回文章
    返回