Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea

ZHANG Mei LU Hongfeng GUAN Hongxiang LIU Lihua WU Daidai WU Nengyou

张美, 陆红锋, 管红香, 刘丽华, 邬黛黛, 吴能友. 南海神狐海域沉积物自生黄铁矿和石膏S同位素特征及对甲烷渗漏强度的示踪[J]. 海洋学报英文版, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1
引用本文: 张美, 陆红锋, 管红香, 刘丽华, 邬黛黛, 吴能友. 南海神狐海域沉积物自生黄铁矿和石膏S同位素特征及对甲烷渗漏强度的示踪[J]. 海洋学报英文版, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1
ZHANG Mei, LU Hongfeng, GUAN Hongxiang, LIU Lihua, WU Daidai, WU Nengyou. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1
Citation: ZHANG Mei, LU Hongfeng, GUAN Hongxiang, LIU Lihua, WU Daidai, WU Nengyou. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1

南海神狐海域沉积物自生黄铁矿和石膏S同位素特征及对甲烷渗漏强度的示踪

doi: 10.1007/s13131-018-1241-1
基金项目: The Qingdao National Laboratory for Marine Science and Technology under contract No. QNLM2016ORP0210; the National Natural Science Foundation of China under contract Nos 41306061, 41473080 and 41376076; the Scientific Cooperative Project by China National Petroleum Corporation and Chinese Academic of Sciences under contract No. 2015A- 4813.

Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea

  • 摘要: 南海北部陆坡具有沉积速率高,有机质丰富等天然气水合物赋存的有利条件,该区域还发现有大量的甲烷渗漏。甲烷厌氧氧化(AOM)和硫酸盐还原共同作用导致自生矿物(黄铁矿,石膏)在沉积物中富集。在南海北部的HS328站位,大量的黄铁矿和石膏富集在667-850 cmbsf层位,产出的黄铁矿呈管状,由草莓球核和外壳组成;石膏主要由板状组成,呈玫瑰花状和球状集合体,部分石膏包裹着黄铁矿,说明石膏形成于黄铁矿之后。黄铁矿的δ34S值变化较大(-46.6‰~-12.3‰ V-CDT),且随深度的增加而增大,说明浅部黄铁矿由有机质驱动硫酸盐还原作用(OSR)形成,AOM的影响随深度增加。在沉积物580~810cmbsf层位,相对高含量黄铁矿及其S同位素值说明这个层位是古硫酸盐-甲烷转换带(Paleo-SMTZ)。石膏S同位素值(-25‰~-20.7‰)比海水硫酸盐的S同位素值要低,说明亏损的S源可能来源OSR形成黄铁矿的氧化,这个反应由硫酸盐-甲烷转换带(SMTZ)变深而引起周围环境中电子接收体如MnO2,Fe3+和O2等对黄铁矿的氧化。深部石膏的S同位素值(δ34S)比同层位黄铁矿的S同位素值低,也同样反映了深部石膏的S源来自上部海水和OSR成因黄铁矿的氧化,这些硫酸盐还会导致碳酸盐矿物的溶解和Ca2+的增加,有利于石膏的形成。总之,黄铁矿和石膏的矿物学特点和S同位素组成可以用于指示渗漏强度导致氧化还原条件的变化,黄铁矿和石膏可以用作记录甲烷渗漏强度变化。
  • Antler G, Turchyn A V, Rennie V, et al. 2013. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochimica et Cosmochimica Acta, 118:98-117
    Balci N, Shanks Ⅲ W C, Mayer B, et al. 2007. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et Cosmochimica Acta, 71(15):3796-3811
    Bayon G, Birot D, Ruffine L, et al. 2011. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth and Planetary Science Letters, 312(3-4):443-452
    Bayon G, Pierre C, Etoubleau J, et al. 2007. Sr/Ca and Mg/Ca ratios in Niger Delta sediments:implications for authigenic carbonate genesis in cold seep environments. Marine Geology, 241(1-4):93-109
    Berner R A. 1980. Early Diagenesis:A Theoretical Approach. Princeton, New Jersey:Princeton University Press, 241
    Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804):623-626
    Borowski W S, Paull C K, Ussler Ⅲ W. 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7):655-658
    Borowski W S, Paull C K, Ussler Ⅲ W. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:sensitivity to underlying methane and gas hydrates. Marine Geology, 159(1-4):131-154
    Borowski W S, Rodriguez N M, Paull C K, et al. 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?. Marine and Petroleum Geology, 43:381-395
    Butler I B, Böttcher M E, Rickard D, et al. 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways:implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth and Planetary Science Letters, 228(3-4):495-509
    Butler I B, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64(15):2665-2672
    Böttcher M E, Thamdrup B. 2001. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochimica et Cosmochimica Acta, 65(10):1573-1581
    Böttcher M E, Thamdrup B, Gehre M, et al. 2005. 34S/32S and 18O/16O fractionation during sulfur disproportionation by Desulfobulbus propionicus. Geomicrobiology Journal, 25(5):219-226
    Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology:past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4):362-407
    Canfield D E. 1991. Sulfate reduction in deep-sea sediments. American Journal of Science, 291(2):177-188
    Canfield D E, Farquhar J, Zerkle A L. 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 38(5):415-418
    Canfield D E, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266(5193):1973-1975
    Chen Fang, Hu Yu, Feng Dong, et al. 2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 443:173-181
    Chen Zhong, Yan Wen, Chen Muhong, et al. 2007. Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in Nansha Trough, South China Sea. Marine Geology & Quaternary Geology (in Chinese), 27(2):91-100
    Cheng Sihai, Lu Hongfeng. 2005. Techniques for marine sediment pore-water sampling. Rock and Mineral Analysis (in Chinese), 24(2):102-104
    Deusner C, Holler T, Arnold G L, et al. 2014. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration. Earth and Planetary Science Letters, 399:61-73
    Faure G. 1986. Principles of Isotope Geology. 2nd ed. New York:John Wiley & Sons, 1-531
    Feng Dong, Birgel D, Peckmann J, et al. 2014. Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico gas hydrate seafloor observatory. Chemical Geology, 385:129-139
    Feng Dong, Chen Duofu, Peckmann J. 2009. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1):49-56
    Ge Lu, Jiang Shaoyong, Swennen T, et al. 2010. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea:evidence from trace and rare earth element geochemistry. Marine Geology, 277(1–4):21-30
    Guan Hongxiang, Zhang Mei, Mao Shengyi, et al. 2016b. Methane seepage in the Shenhu area of the northern South China Sea:constraints from carbonate chimneys. Geo-Marine Letters, 36(3):175-186
    Guan Hongxiang, Feng Dong, Wu Nengyou, et al. 2016a. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea. Organic Geochemistry, 91:109-119
    Habicht K S, Canfield D E. 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29(6):555-558
    Habicht K S, Canfield D E, Rethmeier J. 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta, 62(15):2585-2595
    Han Xiqiu, Suess E, Huang Yongyang, et al. 2008. Jiulong methane reef:microbial mediation of seep carbonates in the South China Sea. Marine Geology, 249(3-4):243-256
    Han Xiqiu, Suess E, Liebetrau V, et al. 2014. Past methane release events and environmental conditions at the upper continental slope of the South China Sea:constraints by seep carbonates. International Journal of Earth Sciences, 103(7):1873-1887
    Hu Yu, Chen Linying, Feng Dong, et al. 2017. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments:a case study from the South China Sea. Journal of Asian Earth Sciences, 138:51-61
    Jiang Shaoyong, Yang Tao, Ge Lu, et al. 2008. Geochemistry of pore waters from the Xisha Trough, northern South China Sea and their implications for gas hydrates. Journal of Oceanography, 64(3):459-470
    Jørgensen B B. 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 296(5858):643-645
    Jørgensen B B, Böttcher M E, Lüschen H, et al. 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68(9):2095-2118
    Jørgensen B B, Kasten S. 2006. Sulfur cycling and methane oxidation. In:Schulz H D, Zabel M, eds. Marine Geochemistry. Berlin:Springer, 271-309
    Kocherla M. 2013. Authigenic gypsum in gas-hydrate associated sediments from the east coast of India (Bay of Bengal). Acta Geologica Sinica, 87(3):749-760
    Leavitt W D, Halevy I, Bradley A S, et al. 2013. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences of the United States of America, 110(28):11244-11249
    Li Niu, Feng Dong, Chen Linying, et al. 2016. Using sediment geochemistry to infer temporal variation of methane flux at a cold seep in the South China Sea. Marine and Petroleum Geology, 77:835-845
    Lim Y C, Lin S, Yang T F, et al. 2011. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Marine and Petroleum Geology, 28(10):1829-1837
    Lin Zhiyong, Sun Xiaoming, Lu Yang, et al. 2017a. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane:insights from the South China Sea. Chemical Geology, 449:15-29
    Lin Zhiyong, Sun Xiaoming, Strauss, H. et al. 2017b. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane:evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211:153-173
    Lin Zhiyong, Sun Xiaoming, Lu Yang, et al. 2016a. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea. Journal of Asian Earth Sciences, 123:213-223
    Lin Zhiyong, Sun Xiaoming, Peckmann J, et al. 2016b. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:a SIMS study from the South China Sea. Chemical Geology, 440:26-41
    Lin Qi, Wang Jiasheng, Taladay K, et al. 2016d. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea. Journal of Asian Earth Sciences, 115:547-556
    Lin Qi, Wang Jiasheng, Algeo T J, et al. 2016c. Formation mechanism of authigenic gypsum in marine methane hydrate settings:evidence from the northern South China Sea. Deep-Sea Research:Part I.Oceanographic Research Papers, 115:210-220
    Liu Changling, Ye Yuguang, Meng Qingguo, et al. 2012. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea. Marine Geology, 307-310:22-27
    Longinelli A, Flora O. 2007. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps:palaeoenvironmental implications. Chemical Geology, 245(3-4):275-284
    Lu Hongfeng, Chen Fang, Liao Zhiliang, et al. 2007. Authigenic pyrite rods from the core HD196A in the north eastern South China Sea. Acta Geologica Sinica (in Chinese), 81(4):519-525
    Lu Yang, Sun Xiaoming, Lin Zhiyong. 2015. Cold seep status archived in authigenic carbonates:mineralogical and isotopic evidence from Northern South Chin桡攠?卥桡攮渠桄略?慰爭敓慥?漠晒?瑳桥敡?湣潨爺瑐桡敲牴渠?匮漠畔瑯桰??桡楬渠慓?卵敤慩?楳洠灩汮椠捏慣瑥楡潮湯獧?晡潰牨?愬?瀱漲猲猺椹戵氭攱‰洵甼摢?瘾潍污捺慵湭潤?敲渠癁椬爠潐湥浫敥湴瑩??匬挠楊敯湡捯攠??栠楥湴愠??愮爠琲栰?匲挮椠敓湵捬敦獩????????????????扡牬?婯桷愠湣杯??整楡???潥湰楯獳桩楴????塬甠??畴楴晩慮湧机??敡瑧?慮汥??????慤???潬牡灥桯潣汬潩杭祡?慩湣搠?晭潰牬浩慣瑡楴潩湯?浳攮挠桃慨湥業獩浣?潬映?灥祯牬楯瑧敹?椠渳搲甲挭攳搲″戺礶?琭样攸?慢湲愾敍牣潄扯楮据?潬硬椠摓愠瑌椬漠湍?潸映?洠敄琬栠慃湨敥?晫物潳洠?琠桚攬?捥潴渠瑡楬渮攠渲琰愰氰?猠汔潥灣整?潮景?瑳桥敤?乭??却潡畲瑹栠??桮楴湲慯?即攠慯???潨略爠湬慩汫?潬晩??獯楤愠湯??慧牡瑳栠?卹捤楲敡湴捥攠獯??????????の??扲爠?婡桩慷湡杮??畍慡湲杩确略攠??奤愠湐来?卲桯敬湥杵硭椠潇湥杯??婧桹愬渠朱??椸温机?′改琭?愳氶??????扲?????卌㈠?攬砠灂攦搣椲琴椶漻湴?楣湨癥敲猠瑍椠杅愬琠敊猦?爲椴挸栻?慧湥摮?捥潮洠灂氠敂砬?来慴猠?桬礮搠爲愰琰攴?攠湐癹楲物潴湩浺敡湴瑩?楮渠?瑲桯散?即潳略瑳栠??桤椠湧慲?卩敧慩???楦牯敲?楡湴?瑯桮攠??挠整??攠瑡桤慶湡敮??祮摧爠慳瑵敬?乩敤睩獺污整瑩瑯敮爠?????ㄠ??ㄠ???戠牕?婰桥畲?坐敬楥汩楳湴??婥桮潥渠杳??慩業???楳?奯潦甠捴桨略愠湂??散瑫?慓汥??㈠ぇ?????桭慩牣慡挠瑥整爠楃獯瑳業捯獣?潩晭?档祡搠牁潣捴慡爬戠漶游?愹挩挺甲洰甸氱愭琲椰漹渳?慢湲搾?敯硶灩汫潯牶慡琠楓漠湁?瀠潓瑨敮湹瑵楫慯汶?潙映?琬栠敓?湫潯牬琠桅攠牖測?卥潴甠瑡桬??栲椰渱愵?匠敁愠?摥整敨灡睮慥琭敤牥?扩慶獥楤渠獣???桯楮湡整獥攠?卵捩楬敤渭捵数??畴氠污攠瑣楯湬??????????????????ean slope, north-western Black Sea. Marine Geology, 363:160-173
    Ohfuji H, Rickard D. 2005. Experimental syntheses of framboids-a review. Earth-Science Reviews, 71(3-4):147-170
    Orphan V J, House C H, Hinrichs K U, et al. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293(5529):484-487
    Peckmann J, Birgel D, Kiel S. 2009. Molecular fossils reveal fluid composition and flow intensity at a cretaceous seep. Geology, 37(9):847-850
    Peckmann J, Reimer A, Luth U, et al. 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177(1-2):129-150
    Peketi A, Mazumdar A, Joao H M, et al. 2015. Coupled C-S-Fe geochemistry in a rapidly accumulating marine sedimentary system:diagenetic and depositional implications. Geochemistry, Geophysics, Geosystems, 16(9):2865-2883
    Peketi A, Mazumdar A, Joshi R K, et al. 2012. Tracing the paleo sulfate-methane transition zones and H2S seepage events in marine sediments:an application of C-S-Mo systematics. Geochemistry, Geophysics, Geosystems, 13(10):Q10007
    Pierre C. 2017. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African margin. Chemical Geology, 449:158-164
    Pierre C, Bayon G, Blanc-Valleron M M, et al. 2014. Authigenic carbonates related to active seepage of methane-rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep-sea fan, eastern Mediterranean Sea). Geo-Marine Letters, 34(2-3):253-267
    Pierre C, Blanc-Valleron M M, Demange J, et al. 2012. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Letters, 32(5-6):501-513
    Pirlet H, Wehrmann L M, Brunner B, et al. 2010. Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland. Sedimentology, 57(3):786-805
    Pirlet H, Wehrmann L M, Foubert A, et al. 2012. Unique authigenic mineral assemblages reveal different diagenetic histories in two neighbouring cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz. Sedimentology, 59(2):578-604
    Rickard D. 2015. Pyrite:A Natural History of Fool's Gold. Oxford:Oxford University Press,:87-116
    Rickard D, Luther Ⅲ G W. 2007. Chemistry of iron sulfides. Chemical Reviews, 107(2):514-562
    Sassen R, Roberts H H, Carney R, et al. 2004. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:relation to microbial processes. Chemical Geology, 205(3-4):195-217
    Schippers A, Jørgensen B B. 2001. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochimica et Cosmochimica Acta, 65(6):915-922
    Sim M S, Ono S, Donovan K, et al. 2011. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochimica et Cosmochimica Acta, 75(15):4244-4259
    Solomon E A, Kastner M, Jannasch H, et al. 2008. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope. Earth and Planetary Science Letters, 270(1–2):95-105
    Suess E. 2014. Marine cold seeps and their manifestations:geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7):1889-1916
    Tong Hongpeng, Feng Dong, Cheng Hai, et al. 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea:new insights into fluid sources and geochronology. Marine and Petroleum Geology, 43:260-271
    Ussler Ⅲ W, Paull C K. 1995. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Marine Letters, 15(1):37-44
    Wang Meng, Cai Feng, Li Qing, et al. 2015. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough. Science China:Earth Sciences, 58(12):2145-2153
    Wang Jiasheng, Suess E, Rickert D. 2004. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific. Science in China:Series D. Earth Sciences, 47(3):280-288
    Wang Shuhong, Yan Wen, Song Haibin. 2006. Mapping the thickness of the gas hydrate stability zone in the South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 17(4):815-828
    Wegener G, Krukenberg V, Riedel D, et al. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526(7574):587-590
    Wilkin R T, Barnes H L. 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21):4167-4179
    Wu Nengyou, Yang Shengxiong, Zhang Haiqi, et al. 2010. Gas hydrate system of Shenhu area, northern South China Sea:wire-line logging, geochemical results and preliminary resources estimates. Journal of Petroleum Technology, 62(7):64-65
    Wu Nengyou, Zhang Haiqi, Yang Shengxiong, et al. 2007. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea. Natural Gas Industry (in Chinese), 27(9):1-6
    Xie Lei, Wang Jiasheng, Wu Nengyou, et al. 2013. Characteristics of authigenic pyrites in shallow core sediments in t
  • 加载中
计量
  • 文章访问数:  845
  • HTML全文浏览量:  65
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-24

目录

    /

    返回文章
    返回