Macrobenthic communities on the continental shelf of the Prydz Bay, East Antarctica

Kun Liu Heshan Lin Xuebao He Yaqin Huang Zhong Li Junhui Lin Jianfeng Mou Shuyi Zhang Jianjun Wang Jun Sun

Kun Liu, Heshan Lin, Xuebao He, Yaqin Huang, Zhong Li, Junhui Lin, Jianfeng Mou, Shuyi Zhang, Jianjun Wang, Jun Sun. Macrobenthic communities on the continental shelf of the Prydz Bay, East Antarctica[J]. Acta Oceanologica Sinica, 2020, 39(2): 38-48. doi: 10.1007/s13131-018-1280-7
Citation: Kun Liu, Heshan Lin, Xuebao He, Yaqin Huang, Zhong Li, Junhui Lin, Jianfeng Mou, Shuyi Zhang, Jianjun Wang, Jun Sun. Macrobenthic communities on the continental shelf of the Prydz Bay, East Antarctica[J]. Acta Oceanologica Sinica, 2020, 39(2): 38-48. doi: 10.1007/s13131-018-1280-7

doi: 10.1007/s13131-018-1280-7

Macrobenthic communities on the continental shelf of the Prydz Bay, East Antarctica

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    †These authors contributed equally to this work.
  • Figure  1.  Diagram of macrobenthos sampling sites in the Prydz Bay.

    Figure  2.  Species number and composition of macrobenthos in the Prydz Bay.

    Figure  3.  Spatial distribution of macrobenthos abundance in the Prydz Bay.

    Figure  4.  Spatial distribution of macrobenthos biomass in the Prydz Bay.

    Figure  5.  Bray-Curtis similarity cluster analysis of macrobenthic communities in the Prydz Bay.

    Figure  6.  Spatial distribution patterns of macrobenthic communities in the Prydz Bay.

    Figure  7.  Species number, abundance and biomass of functional feeding groups.

    Figure  8.  Spatial distribution of the abundance and biomass of functional feeding groups. a. Abundance and b. biomass.

    Table  1.   Parameters of environmental factors and sediment types at various stations

    RegionStationDepth
    /m
    Median particle
    size (Φ)
    Bottom
    temperature/°C
    Sand
    /%
    Silt
    /%
    Clay
    /%
    Gravel
    /%
    Sediment
    type
    Front edge of Amery Ice ShelfZS1664126.9–1.9164.026.07.82.2silty sand
    Amery BasinP5-1266717 –1.90 7.078.914.10.0silt
    Amery BasinP7-1655826.6–1.8927.959.911.30.9sandy silt
    Svenner ChannelP6-1269916.4–1.91 7.677.714.70.0silt
    Prydz ChannelP5-751016.9–1.38 6.478.814.80.0silt
    Prydz ChannelPA-348718.1–1.8020.466.013.60.0sandy silt
    Prydz ChannelPA-154548.7–1.8942.948.6 8.50.0sandy silt
    Four Ladies BankPA-535313.7–1.8510.176.313.60.0silt
    Four Ladies BankP7-1222542.4–1.7141.149.0 7.42.5sandy silt
    Four Ladies BankP6-838625.2–1.8523.766.5 8.51.3sandy silt
    下载: 导出CSV

    Table  2.   SIMPER similarity analysis based on the macrobenthic communities composition of the Prydz Bay

    GroupSpeciesAverage abundance/ind.·m–2Average similarity/%Contribution rate/%Cumulative percentage/%
    2Ophelina sp.2 7.1925.3325.33
    (Average similarity: 28.39%)Isocirrus yungi1.673.5912.6437.97
    Halichondria sp.1.333.0210.6248.59
    Tharyx sp.11.892.8710.1258.71
    Maldane sarsi1.942.8710.1268.83
    Notomastus sp.1.672.42 8.5177.34
    Glycera sp.1.542.14 7.5584.9
    Aricidea sp.1.462.14 7.5592.45
    3Pseudharpinia antarctica2 21.33 50 50
    (Average similarity: 42.65%)Amphiophiura metabula2.1921.33 50 100
    4Cephalothrix sp.2.1918.93 50 50
    (Average similarity: 37.85%)Golfingia sp.2.1918.93 50 100
    下载: 导出CSV

    Table  3.   Correlation between biological variables and environmental factors

    DepthMedian particleBottom temperatureSand%Silt%Clay%Gravel%
    Abundance0.0550.152–0.0670.224–0.297–0.1270.130
    Biomass–0.624–0.1520.4670.079–0.176–0.115–0.171
    Species0.1110.178–0.1290.265–0.339–0.1110.042
    APl–0.350–0.1650.2480.076–0.2160.076–0.401
    AO0.3120.340–0.4370.430–0.430–0.2770.219
    AD0.1040.238–0.0790.244–0.287–0.1770.223
    AC0.1400.043–0.0790.079–0.1760.0240.086
    BPl–0.597–0.0920.4430.135–0.246–0.135–0.149
    BO0.2880.336–0.4250.425–0.425–0.3080.309
    BD–0.2190.1950.2740.158–0.170–0.2070.134
    BC0.2070.249–0.1950.201–0.243–0.1520.219
    Note: APl, AO, AD and AC: the abundance of planktophagous group, omnivorous group, detritivorous group and carnivorous group, respectively; BPl, BO, BD and BC: the biomass of planktophagous group, omnivorous group, detritivorous group and carnivorous group, respectively.
    下载: 导出CSV

    Table  4.   Summary of data from some quantitative macrobenthic studies in various regions of the Antarctic

    RegionDepth/mAbundance
    /ind.·m–2
    Biomass
    /g·m–2
    Dominant groupsReference
    Southeastern Weddell Sea170–2 037131–12 8460.12–16 446sponges, holothurians, asteroids, polychaetesGerdes et al. (1992)
    Admiralty Bay60–250889–2 834153 –2 464polychaetes, bivalves, tunicates, echinodermsJażdżeski et al. (1986)
    King George Island130–2 000730–14 00050–950polychaetes, bivalves, crustaceans, ophiuroidsPiepenburg et al. (2002)
    South Shetland Island60–8501 960–54 45014–825polychaetes, mollusks, echinoderms, crustaceansMühlenhardt-Siegel (1988)
    South Shetland waters42–671160–4 38023.3–6 673ascidians, sponges, polychaetesSáiz-Salinas et al. (1997)
    Elephant Island100–400140–47 6201–197polychaetes, mollusks, echinoderms, crustaceansMühlenhardt-Siegel (1988)
    Anvers Island, Arthur Harbour5–752 891–86 514polychaetes, oligochaetes, amphipodsRichardson and Hedgpeth (1977)
    West Antarctic Peninsula continental shelf550–62511 000–21 000polychaetaGlover et al. (2008)
    Antarctic waters100–800170–20 000Glover et al. (2008)
    Ross Sea shelfGambi and Bussotti (1999)
    Site A (southwest Ross Sea)810250–600polychaetes, bivalves
    Site B (the northern part of the Joides basin)5801 040polychaetes
    Site C (the northern flank of the Mawson bank)450516crustaceans, polychaetes, echinoderms
    Prydz Bay225–6990–5920–1 155.5polychaetes, spongesthis study
    下载: 导出CSV

    A1.   Species catalogue of the macrobenthos in the Prydz Bay

    PhylumFamilySpeciesFunctional feeding groups
    CnidariaClavulariidaeTelesto sp.D
    AnnelidaAmpharetidaeAmpharetidae und.D
    CapitellidaeNotomastus sp.D
    CirratulidaeTharyx sp.1D
    CirratulidaeTharyx sp.2C
    GlyceridaeGlycera sp.C
    LumbrineridaeParaninoe antarctica (Monro, 1930)C
    LumbrineridaeLumbrineris sp.D
    MaldanidaeIsocirrus yungi Gravier, 1911D
    MaldanidaeMaldane sarsi Malmgren, 1865D
    MaldanidaeMaldanidae und.1D
    MaldanidaeMaldanidae und.2D
    MaldanidaeMaldanidae und.3D
    MaldanidaeNotoproctus sp.C
    NephtyidaeAglaophamus sp.C
    NephtyidaeAglaophamus virginis (Kinberg, 1865)C
    NephtyidaeNephtys sp.1C
    NephtyidaeNephtys sp.2O
    OpheliidaeOphelina sp.D
    OrbiniidaeLeodamas marginatus (Ehlers, 1897)D
    ParaonidaeAricidea sp.D
    ParaonidaeParaonis (Paraonides) gracilis Monro, 1930C
    PolynoidaePolynoidae und.1C
    PolynoidaePolynoidae und.2D
    ScalibregmatidaeScalibregma inflatum Rathke, 1843O
    SpionidaeLaonice sp.D
    TerebellidaeNeoleprea sp.Pl
    MolluscaKelliidaeKellia sp.O
    ArthropodaAmpeliscidaeAmpelisca bouvieri Chevreux, 1912C
    GnathiidaeGnathia dentata (Sars G.O., 1872)D
    LiljeborgiidaeLiljeborgia macrodon Schellenberg, 1931C
    LysianassidaeCheirimedon crenatipalmatus Stebbing, 1888C
    LysianassidaeTryphosella longiseta Ren, 1991O
    NymphonidaeNymphon stroemi Krøyer, 1844C
    OedicerotidaeOediceroides sp.Pl
    PhotidaeGammaropsis sp.Pl
    PhotidaeMegamphopus sp.C
    PhoxocephalidaePseudharpinia antarctica Ren, 1991D
    EchinodermataAmphiuridaeAmphioplus sp.D
    AmphiuridaeAmphiura sp.D
    OphiuridaeAmphiophiura metabula H.L. Clark, 1915D
    StichopodidaeStichopodidae und.Pl
    PoriferaClathrinidaeClathrina sp.Pl
    HalichondriidaeHalichondria sp.Pl
    LeucosoleniidaeLeucosolenia sp.C
    NemerteaCephalothricidaeCephalothrix sp.C
    EmplectonematidaeNemertopsis sp.C
    LineidaeCerebratulus sp.C
    LineidaeLineidae und.D
    SipunculaGolfingiidaeGolfingia sp.Pl
    Note: Pl represents planktophagous group, O omnivorous group, C carnivorous group, and D detri​​​​​​​tivorous group.
    下载: 导出CSV
  • [1] Arnaud P M, Jazdzewski K, Presler P, et al. 1986. Preliminary survey of benthic invertebrates collected by Polish Antarctic Expeditions in Admiralty Bay (King George Island, South Shetland Islands, Antarctica). Polish Polar Research, 7(1–2): 7–24
    [2] Arrigo K R, Van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research: Oceans, 108(C8): 27
    [3] Barbara L, Crosta X, Massé G, et al. 2010. Deglacial environments in eastern Prydz Bay, East Antarctica. Quaternary Science Reviews, 29(19–20): 2731–2740. doi: 10.1016/j.quascirev.2010.06.027
    [4] Barnes D K A, Conlan K E. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1477): 11–38. doi: 10.1098/rstb.2006.1951
    [5] Barry J P, Dayton P K. 1988. Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biology, 8(5): 367–376. doi: 10.1007/BF00442028
    [6] Boaventura D, Da Fonseca L C, Teles-Ferreira C. 1999. Trophic structure of macrobenthic communities on the Portuguese coast. A review of lagoonal, estuarine and rocky littoral habitats. Acta Oecologica, 20(4): 407–415
    [7] Borchers A, Voigt I, Kuhn G, et al. 2011. Mineralogy of glaciomarine sediments from the Prydz Bay-Kerguelen region: relation to modern depositional environments. Antarctic Science, 23(2): 164–179. doi: 10.1017/S0954102010000830
    [8] Carey Jr A G. 1991. Ecology of North American arctic continental shelf benthos: a review. Continental Shelf Research, 11(8–10): 865–883. doi: 10.1016/0278-4343(91)90083-I
    [9] Choudhury M, Brandt A. 2007. Composition and distribution of benthic isopod (Crustacea, Malacostraca) families off the Victoria-Land Coast (Ross Sea, Antarctica). Polar Biology, 30(11): 1431–1437. doi: 10.1007/s00300-007-0304-0
    [10] Clarke A. 2008. Antarctic marine benthic diversity: patterns and processes. Journal of Experimental Marine Biology and Ecology, 366(1–2): 48–55. doi: 10.1016/j.jembe.2008.07.008
    [11] Clarke A, Griffiths H J, Linse K, et al. 2007. How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs. Diversity and Distributions, 13(5): 620–632. doi: 10.1111/j.1472-4642.2007.00380.x
    [12] Clarke A, Johnston N M. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology, 41: 47–114
    [13] Constable A J. 1991. Potential impacts of bottom trawling on benthic communities in Prydz Bay, Antarctica. CCAMLR Select Sci Papers SC-CAMLR-X/BG/19, 8: 403–410
    [14] Costanza R, D’Arge R, De Groot R, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630): 253–260. doi: 10.1038/387253a0
    [15] Cummings V J, Thrush S F, Chiantore M, et al. 2010. Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude. Antarctic Science, 22(6): 793–804. doi: 10.1017/S0954102010000489
    [16] Davis A J, Lawton J H, Shorrocks B, et al. 1998. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology, 67(4): 600–612. doi: 10.1046/j.1365-2656.1998.00223.x
    [17] Dayton P K, Oliver J S. 1977. Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science, 197(4298): 55–58. doi: 10.1126/science.197.4298.55
    [18] Dunton K H, Goodall J L, Schonberg S V, et al. 2005. Multi-decadal synthesis of benthic-pelagic coupling in the western arctic: role of cross-shelf advective processes. Deep Sea Research Part II: Topical Studies in Oceanography, 52(24–26): 3462–3477. doi: 10.1016/j.dsr2.2005.09.007
    [19] El-Sayed S Z. 1994. Southern Ocean Ecology: The BIOMASS Perspective. Cambridge, GB: Cambridge University Press
    [20] Fillinger L, Janussen D, Lundälv T, et al. 2013. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Current Biology, 23(14): 1330–1334. doi: 10.1016/j.cub.2013.05.051
    [21] Fraser W R, Hofmann E E. 2003. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Marine Ecology Progress Series, 265: 1–15. doi: 10.3354/meps265001
    [22] Fricker H A, Popov S, Allison I, et al. 2001. Distribution of marine ice beneath the Amery Ice Shelf. Geophysical Research Letters, 28(11): 2241–2244. doi: 10.1029/2000GL012461
    [23] Gambi M C, Bussotti S. 1999. Composition, abundance and stratification of soft-bottom macrobenthos from selected areas of the Ross Sea shelf (Antarctica). Polar Biology, 21(6): 347–354. doi: 10.1007/s003000050372
    [24] Gerdes D, Hilbig B, Montiel A. 2003. Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biology, 26(5): 295–301
    [25] Gerdes D, Klages M, Arntz W E, et al. 1992. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biology, 12(2): 291–301
    [26] Glover A G, Smith C R, Mincks S L, et al. 2008. Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: evidence for a sediment ‘food bank’ and similarities to deep-sea habitats. Deep Sea Research Part II: Topical Studies in Oceanography, 55(22–23): 2491–2501. doi: 10.1016/j.dsr2.2008.06.008
    [27] Grebmeier J M, Overland J E, Moore S E, et al. 2006. A major ecosystem shift in the northern Bering Sea. Science, 311(5766): 1461–1464. doi: 10.1126/science.1121365
    [28] Griffiths H J, Linse K, Barnes D K A. 2008. Distribution of macrobenthic taxa across the Scotia Arc, Southern Ocean. Antarctic Science, 20(3): 213–226. doi: 10.1017/S0954102008001168
    [29] Gutt J. 2001. On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24(8): 553–564. doi: 10.1007/s003000100262
    [30] Gutt J, Koubbi P, Eléaume M. 2007. Mega-epibenthic diversity off Terre Adélie (Antarctica) in relation to disturbance. Polar Biology, 30(10): 1323–1329. doi: 10.1007/s00300-007-0293-z
    [31] Hibberd T. 2016. Describing and predicting the spatial distribution of benthic biodiversity in the sub-Antarctic and Antarctic [dissertation]. Hobart: University of Tasmania
    [32] Hodgkinson R P, Colman R S, Robb M, et al. 1991. Current meter moorings in the region of Prydz Bay, Antarctica, 1986. Antarctic: Antarctic Division
    [33] Hosie G W, Cochran T G. 1994. Mesoscale distribution patterns of macrozooplankton communities in Prydz Bay, Antarctica-January to February 1991. Marine Ecology Progress Series, 106: 21–39. doi: 10.3354/meps106021
    [34] Jażdżeski K, Jurasz W, Kittel W, et al. 1986. Abundance and biomass estimates of the benthic fauna in Admiralty Bay, King George Island, South Shetland Islands. Polar Biology, 6(1): 5–16. doi: 10.1007/BF00446235
    [35] Kröger K, Rowden A A. 2008. Polychaete assemblages of the northwestern Ross Sea shelf: worming out the environmental drivers of Antarctic macrobenthic assemblage composition. Polar Biology, 31(8): 971–989. doi: 10.1007/s00300-008-0437-9
    [36] Lin Heshan, Wang Jianjun, Liu Kun, et al. 2016. Benthic macrofaunal production for a typical shelf-slope-basin region in the western Arctic Ocean. Continental Shelf Research, 113: 30–37. doi: 10.1016/j.csr.2015.12.001
    [37] Linse K, Griffiths H J, Barnes D K A, et al. 2013. The macro- and megabenthic fauna on the continental shelf of the eastern Amundsen Sea, Antarctica. Continental Shelf Research, 68: 80–90. doi: 10.1016/j.csr.2013.08.012
    [38] Liu Kun, Lin Heshan, He Xuebao, et al. 2016. Functional feeding groups of macrozoobenthos and their relationships to environmental factors in Xiamen coastal waters. Haiyang Xuebao (in Chinese), 38(12): 95–105
    [39] Liu Kun, Lin Heshan, He Xuebao, et al. 2019. Functional trait composition and diversity patterns of marine macrobenthos across the Arctic Bering Sea. Ecological Indicators, 102: 673–685. doi: 10.1016/j.ecolind.2019.03.029
    [40] Liu Xiaoshou, Wang Lu, Li Shuai, et al. 2015. Quantitative distribution and functional groups of intertidal macrofaunal assemblages in Fildes Peninsula, King George Island, South Shetland Islands, Southern Ocean. Marine Pollution Bulletin, 99(1–2): 284–291. doi: 10.1016/j.marpolbul.2015.07.047
    [41] Meredith M P, King J C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32(19): L19604
    [42] Moles J, Figuerola B, Campanyà-Llovet N, et al. 2015. Distribution patterns in Antarctic and Subantarctic echinoderms. Polar Biology, 38(6): 799–813. doi: 10.1007/s00300-014-1640-5
    [43] Moline M A, Claustre H, Frazer T K, et al. 2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology, 10(12): 1973–1980. doi: 10.1111/j.1365-2486.2004.00825.x
    [44] Mühlenhardt-Siegel U. 1988. Some results on quantitative investigations of macrozoobenthos in the Scotia Arct (Antarctica). Polar Biology, 8(4): 241–248. doi: 10.1007/BF00263172
    [45] Olbers D, Gouretsky V, Seiss G, et al. 1992. Hydrographic atlas of the Southern Ocean. Bremerhaven, Germany: Alfred Wegener Institute for Polar and Marine Research
    [46] O’Loughlin P M, Bardsley T M, O’Hara T D. 1994. A preliminary analysis of diversity and distribution of Holothurioidea from Prydz Bay and the MacRobertson Shelf, eastern Antarctica. In: Echinoderms Through Time. Proceedings of the 8th International Echinoderm Conference. Balkema: Rotterdam, 549–555
    [47] O’Loughlin P M, VandenSpiegel D. 2010. A revision of Antarctic and some indo-pacific apodid sea cucumbers (Echinodermata: Holothuroidea: Apodida). Memoirs of Museum Victoria, 67: 61–95. doi: 10.24199/j.mmv.2010.67.06
    [48] Pakhomov E A, Perissinotto R. 1996. Antarctic neritic krill Euphausia crystallorophias: spatio-temporal distribution, growth and grazing rates. Deep Sea Research Part I: Oceanographic Research Papers, 43(1): 59–87. doi: 10.1016/0967-0637(95)00094-1
    [49] Pearson R G, Dawson T P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography, 12(5): 361–371. doi: 10.1046/j.1466-822X.2003.00042.x
    [50] Piepenburg D, Schmid M K, Gerdes D. 2002. The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitudinal biomass cline in the Southern Ocean. Polar Biology, 25(2): 146–158. doi: 10.1007/s003000100322
    [51] Rehm P, Thatje S, Arntz W E, et al. 2006. Distribution and composition of macrozoobenthic communities along a Victoria-Land Transect (Ross Sea, Antarctica). Polar Biology, 29(9): 782–790. doi: 10.1007/s00300-006-0115-8
    [52] Richardson M D, Hedgpeth J W. 1977. Antarctic soft-bottom, macrobenthic community adaptations to a cold, stable, highly productive, glacially affected environment. In: Adaptations Within Antarctic Ecosystems: Proceedings of the 3rd SCAR Symposium on Antarctic Biology. Washington: Smithsonian Institution, 181–196
    [53] Sahade R, Lagger C, Torre L, et al. 2015. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advances, 1(10): e1500050. doi: 10.1126/sciadv.1500050
    [54] Sáiz-Salinas J I, Ramos A, García F J, et al. 1997. Quantitative analysis of macrobenthic soft-bottom assemblages in South Shetland waters (Antarctica). Polar Biology, 17(4): 393–400. doi: 10.1007/PL00013382
    [55] Siegel V. 2005. Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biology, 29(1): 1–22. doi: 10.1007/s00300-005-0058-5
    [56] Stark J S. 2000. The distribution and abundance of soft-sediment macrobenthos around Casey Station, East Antarctica. Polar Biology, 23(12): 840–850. doi: 10.1007/s003000000162
    [57] Taylor F, McMinn A, Franklin D. 1997. Distribution of diatoms in surface sediments of Prydz Bay, Antarctica. Marine Micropaleontology, 32(3–4): 209–229. doi: 10.1016/S0377-8398(97)00021-2
    [58] Teixidó N, Garrabou J, Gutt J, et al. 2004. Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Marine Ecology Progress Series, 278: 1–16. doi: 10.3354/meps278001
    [59] Thrush S, Dayton P, Cattaneo-Vietti R, et al. 2006. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 53(8–10): 959–971. doi: 10.1016/j.dsr2.2006.02.006
    [60] Yao Zhengquan, Shi Xuefa, Liu Qingsong, et al. 2014. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial-interglacial sedimentation. Palaeogeography, Palaeoclimatology, Palaeoecology, 393: 90–101. doi: 10.1016/j.palaeo.2013.11.012
    [61] Yuan Xingzhong, Lu Jianjian, Liu Hong. 2002. Distribution pattern and variation in the functional groups of zoobenthos in the Changjiang estuary. Acta Ecologica Sinica (in Chinese), 22(12): 2054–2062
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  44
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 录用日期:  2018-10-11
  • 网络出版日期:  2020-04-21
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回