Phylogenetic diversity of dimethylsulfoniopropionate-dependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments

ZENG Yinxin

曾胤新. 南、北极海洋不同种类细菌分离株中DMSP-依赖型脱甲基酶基因dmdA的系统发育多样性[J]. 海洋学报英文版, 2019, 38(8): 64-71. doi: 10.1007/s13131-019-1393-7
引用本文: 曾胤新. 南、北极海洋不同种类细菌分离株中DMSP-依赖型脱甲基酶基因dmdA的系统发育多样性[J]. 海洋学报英文版, 2019, 38(8): 64-71. doi: 10.1007/s13131-019-1393-7
ZENG Yinxin. Phylogenetic diversity of dimethylsulfoniopropionate-dependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments[J]. Acta Oceanologica Sinica, 2019, 38(8): 64-71. doi: 10.1007/s13131-019-1393-7
Citation: ZENG Yinxin. Phylogenetic diversity of dimethylsulfoniopropionate-dependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments[J]. Acta Oceanologica Sinica, 2019, 38(8): 64-71. doi: 10.1007/s13131-019-1393-7

南、北极海洋不同种类细菌分离株中DMSP-依赖型脱甲基酶基因dmdA的系统发育多样性

doi: 10.1007/s13131-019-1393-7
基金项目: The National Natural Science Foundation of China under contract No. 41476171; the Chinese Polar Environment Comprehensive Investigation and Assessment Program under contract No. CHINARE04-01.

Phylogenetic diversity of dimethylsulfoniopropionate-dependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments

  • 摘要: 二甲基巯基丙酸内盐(DMSP)主要是由海洋浮游植物生成,可作为胞内渗透调节剂、抗氧化剂、捕食者威慑物、或抗冻剂。DMSP对于海洋细菌而言也是一种重要的碳源和硫源。细菌可以通过涉及DMSP脱甲基酶基因(dmdA)的脱甲基途径、或涉及7种DMSP裂解酶基因的裂解途径对DMSP进行分解代谢。释放到海水中的大多数DMSP是被细菌通过脱甲基途径降解。在主要的海洋细菌种类中存在着较高的dmdA基因频率,这可能部分归功于该基因的水平基因转移(HGT)行为。为了验证这一假设,课题组从北极王湾分离获得了31株细菌。16S rRNA基因序列分析结果表明,除了菌株BSw22118、BSw22131、以及BSw22132分别属于科尔韦尔氏菌属、假单胞菌属、以及冰川菌属之外,其余细菌都属于假交替单胞菌属。在5株亲缘关系较远的不同细菌株中,包括分离自北极的假交替单胞菌BSw22112、科尔韦尔氏菌BSw22118、假单胞菌BSw22131、冰川菌BSw22132和分离自南极的玫瑰柠檬形菌ZS2-28,均检测到dmdA基因。这些dmdA基因与来自温带近岸海水中的鲁杰氏菌DSS-3的dmdA基因具有很高的序列相似性(97.7 %–98.3 %)。此外,在南极玫瑰柠檬形菌ZS2-28中检测到的基因转移因子(GTA)核衣壳蛋白基因g5与鲁杰氏菌DSS-3的g5基因也具有很近的亲缘关系。在这5株极地分离菌中,只有假单胞菌BSw22131能够以DMSP作为唯一碳源进行生长。本次研究的结果支持了不同种类的浮游细菌中存在dmdA基因的水平基因转移这一假说,同时也表明在全球海洋环境中存在如dmdA等功能基因的广泛分布。
  • Andreae M O. 1990. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry, 30: 1-29, doi: 10.1016/0304-4203(90)90059-L
    Bürgermeister S, Georgii H W, Zimmermann R L, et al. 1990. On the biogenic origin of dimethylsulfide: relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere. Journal of Geophysical Research: Atmosphere, 95(D12): 20607-20615, doi: 10.1029/JD095iD12p20607
    Biers E J, Wang Kui, Pennington C, et al. 2008. Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Applied and Environmental Microbiology, 74(10): 2933-2939, doi: 10.1128/AEM.02129-07
    Bullock H A, Luo Haiwei, Whitman W B. 2017. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Frontiers in Microbiology, 8: 637, doi: 10.3389/fmicb.2017.00637
    Charlson R J, Lovelock J E, Andreae M O, et al. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114): 655-661, doi: 10.1038/326655a0
    Cui Yingshun, Suzuki S, Omori Y, et al. 2015. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical Pacific Ocean. Applied and Environmental Microbiology, 81(12): 4184-4194, doi: 10.1128/AEM.03873-14
    Curson A R J, Todd J D, Sullivan M J, et al. 2011. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nature Reviews Microbiology, 9(12): 849-859, doi: 10.1038/nrmicro2653
    Fu Yunyun, MacLeod D M, Rivkin R B, et al. 2010. High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains. Aquatic Microbial Ecology, 59(3): 283-293, doi: 10.3354/ame01398
    Fuhrman J A, Lee S H, Masuchi Y, et al. 1994. Characterization of marine prokaryotic communities via DNA and RNA. Microbial Ecology, 28(2): 133-145, doi: 10.1007/BF00166801
    González J M, Covert J S, Whitman W B, et al. 2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. International Journal of Systematic and Evolutionary Microbiology, 53(5): 1261-1269, doi: 10.1099/ijs.0.02491-0
    González J M, Kiene R P, Moran M A. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Applied and Environmental Microbiology, 65(9): 3810-3819
    Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229-239, doi: 10.1139/m62-029
    Herlemann D P R, Woelk J, Labrenz M, et al. 2014. Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Systematic and Applied Microbiology, 37(8): 601-604, doi: 10.1016/j.syapm.2014.09.002
    Hollibaugh J T, Bano N, Ducklow H W. 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68(3): 1478-1484, doi: 10.1128/AEM.68.3.1478-1484.2002
    Howard E C, Henriksen J R, Buchan A, et al. 2006. Bacterial taxa that limit sulfur flux from the ocean. Science, 314(5799): 649-652, doi: 10.1126/science.1130657
    Howard E C, Sun Shulei, Biers E J, et al. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology, 10(9): 2397-2410, doi: 10.1111/j.1462-2920.2008.01665.x
    Howard E C, Sun Shulei, Reisch C R, et al. 2011. Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Applied and Environmental Microbiology, 77(2): 524-531, doi: 10.1128/AEM.01457-10
    Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 20(14): 2317-2319, doi: 10.1093/bioinformatics/bth226
    Johnston A W B, Green R T, Todd J D. 2016. Enzymatic breakage of dimethylsulfoniopropionate—a signature molecule for life at sea. Current Opinion in Chemical Biology, 31: 58-65, doi: 10.1016/j.cbpa.2016.01.011
    Johnston A W B, Todd J D, Sun Lei, et al. 2008. Molecular diversity of bacterial production of the climate-changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. Journal of Experimental Botany, 59(5): 1059-1067, doi: 10.1093/jxb/erm264
    Karsten U, Kück K, Vogt C, et al. 1996. Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant. In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. New York: Plenum Press, 143-153
    Keller M D. 1989. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biological Oceanography, 6(5-6): 375-382, doi: 10.1080/01965581.1988.10749540
    Kiene R P. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Applied and Environmental Microbiology, 56(11): 3292-3297
    Kiene R P, Linn L J. 2000. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnology and Oceanography, 45(4): 849-861, doi: 10.4319/lo.2000.45.4.0849
    Kiene R P, Linn L J, Bruton J A. 2000. New and important roles for DMSP in marine microbial communities. Journal of Sea Research, 43(3-4): 209-224, doi: 10.1016/S1385-1101(00)00023-X
    Kiene R P, Linn L J, González J, et al. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology, 65(10): 4549-4558
    Kirst G O, Thiel C, Wolff H, et al. 1990. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role. Marine Chemistry, 35(1-4): 381-388, doi: 10.1016/S0304-4203(09)90030-5
    Lang A S, Beatty J T. 2007. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends in Microbiology, 15(2): 54-62, doi: 10.1016/j.tim.2006.12.001
    Lang A S, Zhaxybayeva O, Beatty J T. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nature Reviews Microbiology, 10(7): 472-482, doi: 10.1038/nrmicro2802
    Marrs B. 1974. Genetic recombination in Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America, 71(3): 971-973, doi: 10.1073/pnas.71.3.971
    McDaniel L D, Young E, Delaney J, et al. 2010. High frequency of horizontal gene transfer in the oceans. Science, 330(6000): 50, doi: 10.1126/science.1192243
    Moran M A, Reisch C R, Kiene R P, et al. 2012. Genomic insights into bacterial DMSP transformations. Annual Review of Marine Science, 4: 523-542, doi: 10.1146/annurev-marine-120710-100827
    Pawlowski J, Fahrni J, Lecroq B, et al. 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology, 16(19): 4089-4096, doi: 10.1111/j.1365-294X.2007.03465.x
    Pommier T, Pinhassi J, Hagström A. 2005. Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquatic Microbial Ecology, 41(1): 79-89, doi: 10.3354/ame041079
    Reisch C R, Moran M A, Whitman W B. 2008. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. Journal of Bacteriology, 190(24): 8018-8024, doi: 10.1128/JB.00770-08
    Reisch C R, Stoudemayer M J, Varaljay V A, et al. 2011. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature, 473(7346): 208-211, doi: 10.1038/nature10078
    Ripp S, Miller R V. 1995. Effects of suspended particulates on the frequency of trans diverse and dynamic Roseobacter and Rhodobacter populations in the Chesapeake bay. The ISME Journal, 3(3): 364-373, doi: 10.1038/ismej.2008.115
    et al. 2014. Salinity as a regulator of DMSP degradation in Ruegeria pomeroyi DSS-3. Journal of Microbiology, 52(11): 948-954, doi: 10.1007/s12275-014-4409-1
    Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press
    Schwartz S E, Andreae M O. 1996. Uncertainty in climate change caused by aerosols. Science, 272(5265): 1121, doi: 10.1126/science.272.5265.1121
    Shaw G E. 1983. Bio-controlled thermostasis involving the sulfur cycle. Climatic Change, 5(3): 297-303, doi: 10.1007/BF02423524
    Solioz M, Marrs B. 1977. The gene transfer agent of Rhodopseudomonas capsulata: purification and characterization of its nucleic acid. Archives of Biochemistry and Biophysics, 181(1): 300-307, doi: 10.1016/0003-9861(77)90508-2
    Sun Jing, Todd J D, Thrash J C, et al. 2016. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology, 1(8): 16065, doi: 10.1038/nmicrobiol.2016.65
    Sunda W, Kieber D J, Kiene R P, et al. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature, 418(6895): 317-320, doi: 10.1038/nature00851
    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731-2739, doi: 10.1093/molbev/msr121
    Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673-4680, doi: 10.1093/nar/22.22.4673
    Turner S M, Nightingale P D, Broadgate W, et al. 1995. The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 42(4-5): 1059-1080, doi: 10.1016/0967-0645(95)00066-y
    Vettori C, Stotzky G, Yoder M, et al. 1999. Interaction between bacteriophage PBS1 and clay minerals and transduction of Bacillus subtilis by clay-phage complexes. Environmental Microbiology, 1(4): 347-355, doi: 10.1046/j.1462-2920.1999.00044.x
    Visscher P T, Diaz M R, Taylor B F. 1992. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Marine Ecology Progress Series, 89: 293-296, doi: 10.3354/meps089293
    Weinbauer M G. 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2): 127-181, doi: 10.1016/j.femsre.2003.08.001
    Wolfe G V, Steinke M, Kirst G O. 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature, 387(6636): 894-897, doi: 10.1038/43168
    Yen H C, Hu N T, Marrs B L. 1979. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. Journal of Molecular Biology, 131(2): 157-168, doi: 10.1016/0022-2836(79)90071-8
    Yu Yong, Yan Shulin, Li Huirong, et al. 2011. Roseicitreum antarcticum gen. nov., sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium isolated from Antarctic sandy intertidal sediment. International Journal of Systematic and Evolutionary Microbiology, 61(9): 2173-2179, doi: 10.1099/ijs.0.024885-0
    Zeng Yinxin, Liu Wenqi, Li Huirong, et al. 2007. Effect of restriction endonucleases on assessment of biodiversity of cultivable polar marine planktonic bacteria by amplified ribosomal DNA restriction analysis. Extremophiles, 11(5): 685-692, doi: 10.1007/s00792-007-0086-x
    Zeng Yinxin, Qiao Zongyun, Yu Yong, et al. 2016. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Scientific Reports, 6: 33031, doi: 10.1038/srep33031
    Zhao Yanlin, Wang Kui, Budinoff C, et al. 2008. Gene transfer agent (GTA) genes reveal
  • 加载中
计量
  • 文章访问数:  554
  • HTML全文浏览量:  59
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-23

目录

    /

    返回文章
    返回