A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

Amiruddin Ribal Agustinus Khaeruddin Thamrin Sri Astuti

Amiruddin, RibalAgustinus, Khaeruddin, ThamrinSriAstuti. A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations[J]. 海洋学报英文版, 2019, 38(8): 86-93. doi: 10.1007/s13131-019-1400-z
引用本文: Amiruddin, RibalAgustinus, Khaeruddin, ThamrinSriAstuti. A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations[J]. 海洋学报英文版, 2019, 38(8): 86-93. doi: 10.1007/s13131-019-1400-z
Amiruddin, Ribal Agustinus, Khaeruddin, Thamrin Sri Astuti. A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations[J]. Acta Oceanologica Sinica, 2019, 38(8): 86-93. doi: 10.1007/s13131-019-1400-z
Citation: Amiruddin, Ribal Agustinus, Khaeruddin, Thamrin Sri Astuti. A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations[J]. Acta Oceanologica Sinica, 2019, 38(8): 86-93. doi: 10.1007/s13131-019-1400-z

A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

doi: 10.1007/s13131-019-1400-z
基金项目: The Minister for Research, Technology and Higher Education, Indonesia under contract No. 2611/UN4.21/LK.23/2017 through Research and Community Service Institution at Hasanuddin University, Makassar, Indonesia.

A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

  • 摘要: Wave energy resource assessment and trends around Indonesian’s ocean has been carried out by means of analyzing satellite observations. Wave energy flux or wave power can be approximated using parameterized sea states derived from satellite data. Unfortunately, only some surface parameters can be measured from remote sensing satellites, for example for ocean surface waves: significant wave height. Others, like peak wave period and energy period are not available, but can instead be estimated using empirical models. The results have been assessed by meteorological season. The assessment shows clearly where and when the wave power resource is promising around Indonesian’s ocean. The most striking result was found from June to August, in which about 30-40 kW/m (the 90th percentile: 40-60 kW/m, the 99th percentile: 50-70 kW/m) wave power energy on average has been found around south of the Java Island. The significant trends of wave energy at the 95% level have also been studied and it is found that the trends only occurred for the extreme cases, which is the 99th percentile (i.e., highest 1%). Wave power energy could increase up to 150 W/m per year. The significant wave heights and wave power have been compared with the results obtained from global wave model hindcast carried out by wave model WAVEWATCH Ⅲ. The comparisons indicated excellent agreements.
  • Ardhuin F, Rogers E, Babanin A V, et al. 2010. Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. Journal of Physical Oceanography, 40(9): 1917-1941, doi: 10.1175/2010JPO4324.1
    Babanin Alexander, Zieger Stefan, Ribal Agustinus. 2014a. Satellite Observations of Waves in the Arctic Ocean. 22nd IAHR International Symposium on Ice. Singapore: International Association for Hydro-Environment Engineering and Research (IAHR), 798–805
    Babanin Alexander, Zieger Stefan, Ribal Agustinus. 2014b. Ocean waves in the Arctic: observations and trends. International Symposium on Sea Ice in a Changing Environment. Hobart, Australia: The International Glaciological Society, 69A576
    BPPT. 2014. Outlook Energi Indonesia 2014. Jakarta: Badan Pengkajian dan Penerapan Teknologi (BPPT), 793
    Cornett A M. 2008. A global wave energy resource assessment. Sea Technology, 50(4): 59
    Durrant T H, Greenslade D J M, Hemer M A, et al. 2014. A Global Wave Hindcast Focussed on the Central and South Pacific. Melbourne: Bureau of Meteorology Australia and CSIRO
    Gommenginger C, Cotton D, Srokosz M, et al. 2005. Ocean wave period from satellite altimeters. In: Lacoste H, Ouwehand L, eds. Proceedings of the 2004 Envisat & ERS Symposium. Salzburg, Austria: CD-Rom
    Gommenginger C P, Srokosz M A, Challenor P G, et al. 2003. Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophysical Research Letters, 30(22): 2150
    Gommenginger C P, Srokosz M A, Challenor P G, et al. 2004. Measuring ocean wave period and wave height with satellite altimeters. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, British Columbia, Canada: The American Society of Mechanical Engineers (ASME), 353-360
    Hagerman G. 2001. Southern new england wave energy resource potential. In: Building Energy 2001. Boston, MA, USA: Tufts University, 13
    Hemer M A, Zieger S, Durrant T, et al. 2017. A revised assessment of Australia’s national wave energy resource. Renewable Energy, 114: 85-107, doi: 10.1016/j.renene.2016.08.039
    Kendall M G. 1955. Rank Correlation Methods. 2nd ed. London: Charles Griffin & Co. Ltd, 936
    Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245-259, doi: 10.2307/1907187
    Mudho Yulistyo. 2011. Marine and Fisheries in Figures 2011. Jakarta: Ministry of Marine Affairs and Fisheries
    Peacock D. 2015. IEC TS 62600-101: 2015: Marine energy-Wave, tidal and other water current converters-Part 101: Wave energy resource assessment and characterization. Geneva, Switzerland: The International Electrotechnical Commission, 1–42
    Pontes M T. 1998. Assessing the European wave energy resource. Journal of Offshore Mechanics and Arctic Engineering, 120(4): 226-231, doi: 10.1115/1.2829544
    Prasodjo E, Nurzaman H, Walujanto, et al. 2016. Indonesia Energy Outlook 2016. Jakarta: National Energy Council, 940
    Purnamasari R, Ribal A, Kusuma J. 2018. Prediction of tidal elevations and barotropic currents in the gulf of bone. Journal of Physics: Conference Series, 979: 012071, doi: 10.1088/1742-6596/979/1/012071
    Quartly G D, Srokosz M A, McMillan A C. 2001. Analyzing altimeter artifacts: statistical properties of ocean waveforms. Journal of Atmospheric and Oceanic Technology, 18(12): 2074-2091, doi: 10.1175/1520-0426(2001)018<2074:AAASPO>2.0.CO;2
    Queffeulou P, Croizé-Fillon D. 2012. Global altimeter SWH data set-version 9. 0. Plouzané, France: IFREMER
    Rascle N, Ardhuin F, Queffeulou P, et al. 2008. A global wave parameter database for geophysical applications. Part 1: Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modelling, 25(3-4): 154-171, doi: 10.1016/j.ocemod.2008.07.006
    Ribal A, Amir A K, Toaha S, et al. 2017. Tidal current energy resource assessment around buton island, southeast Sulawesi, Indonesia. International Journal of Renewable Energy Research, 7(2): 857-865
    Ribal A, Zieger S. 2016. Wave energy resource assessment based on satellite observations around Indonesia. AIP Conference Proceedings, 1737: 060001, doi: 10.1063/1.4949308
    Sen P K. 1968. Estimates of the regression coefficient based on kendall’s tau. Journal of the American Statistical Association, 63(324): 1379-1389, doi: 10.1080/01621459.1968.10480934
    Tolman H L. 2009. User manual and system documentation of WAVEWATCH Ⅲ version 3. 14. Technical note, MMAB Contribution. Camp Springs, USA: National Centers for Environmental Prediction, 220
    Vinoth J, Young I R. 2011. Global estimates of extreme wind speed and wave height. Journal of Climate, 24(6): 1647-1665, doi: 10.1175/2010JCLI3680.1
    Wan Yong, Zhang Jie, Meng Junmin, et al. 2016. Study on wave energy resource assessing method based on altimeter data-A case study in Northwest Pacific. Acta Oceanologica Sinica, 35(3): 117-129, doi: 10.1007/s13131-016-0804-2
    Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332(6028): 451-455, doi: 10.1126/science.1197219
    Zheng C W, Pan J, Li J X. 2013. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65: 39-48, doi: 10.1016/j.oceaneng.2013.03.006
    Zieger S. 2010. Long term trends in ocean wind speed and wave height [dissertation]. Melbourne: Swinburne University of Technology
    Zieger S, Babanin A V, Erick R W, et al. 2015. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96: 2-25, doi: 10.1016/j.ocemod.2015.07.014
    Zieger S, Babanin A V, Ribal A. 2013. Wave climate in the marginal ice zone as observed by altimeters. In: American Geophysical Union Fall Meeting. San Francisco, CA, US: AGU
    Zieger S, Babanin A V, Young I R. 2014. Changes in ocean surface wind with a focus on trends in regional and monthly mean values. Deep Sea Research Part I: Oceanographic Research Papers, 86: 56-67, doi: 10.1016/j.dsr.2014.01.004
    Zieger S, Vinoth J, Young I R. 2009. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the Past 20 Years. Journal of Atmospheric and Oceanic Technology, 26(12): 2549-2564, doi: 10.1175/2009JTECHA1303.1
  • 加载中
计量
  • 文章访问数:  614
  • HTML全文浏览量:  80
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02

目录

    /

    返回文章
    返回