A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait

LI Qun WU Huiding YANG Hongwei ZHANG Zhanhai

李群, 吴辉碇, 杨红卫, 张占海. 喀拉海峡潮-地相互作用激发非线性内波的数值模拟[J]. 海洋学报英文版, 2019, 38(5): 1-9. doi: 10.1007/s13131-019-1437-z
引用本文: 李群, 吴辉碇, 杨红卫, 张占海. 喀拉海峡潮-地相互作用激发非线性内波的数值模拟[J]. 海洋学报英文版, 2019, 38(5): 1-9. doi: 10.1007/s13131-019-1437-z
LI Qun, WU Huiding, YANG Hongwei, ZHANG Zhanhai. A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait[J]. Acta Oceanologica Sinica, 2019, 38(5): 1-9. doi: 10.1007/s13131-019-1437-z
Citation: LI Qun, WU Huiding, YANG Hongwei, ZHANG Zhanhai. A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait[J]. Acta Oceanologica Sinica, 2019, 38(5): 1-9. doi: 10.1007/s13131-019-1437-z

喀拉海峡潮-地相互作用激发非线性内波的数值模拟

doi: 10.1007/s13131-019-1437-z
基金项目: The National Key Research and Development Program of China under contract No. 2016YFC1402705; the National Natural Science Foundation of China under contract No. 41576189.

A numerical simulation of the generation and evolution of nonlinear internal waves across the Kara Strait

  • 摘要: 作为北冰洋的一个边缘海,喀拉海存在普遍的非线性内波活动。基于现场观测和卫星遥感的分析表明,其中的一个热点源区位于喀拉海峡。本文基于一个非静力近似的海洋模型分析了潮流与喀拉海峡典型地形断面相互作用激发非线性内波及其演化特征。模拟结果再现了卫星遥感所反映出的非线性内波基本特征。巴伦支海方向的内波波长在夏季大约25km,相速可达0.65m/s。卫星遥感显示巴伦支海一侧靠近源区附近,经常存在一个单波紧随内孤立波波列的双重结构,二者相距约5-8km。模拟结果显示这一结构源自于源区地形的特殊性,二者生成于同一潮周期,但尾随单波较弱,在一个周期后逐渐耗散消失。北向的背景流的加入能够强化(减弱)巴伦支海(喀拉海)方向的内波能量传输。尽管基本特征类似,背景流的加入使得喀拉海方向传播的内波呈现单波结构,这和卫星遥感捕捉到的特征一致。受冬季结冰的影响,喀拉海峡冬季层化特征主要由盐度决定,跃层深度相对于夏季明显增加,非线性条件减弱,内波呈现较为规则的线性波动。
  • Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research, 115(C2):C02012, doi: 10.1029/2009JC005275
    Chen Zhiwu, Xie Jieshuo, Wang Dongxiao, et al. 2014. Density stratification influences on generation of different modes internal solitary waves. Journal of Geophysical Research, 119(10):7029-7046, doi: 10.1002/2014JC010069
    Cushman-Roisin B, Beckers J M. 2011. Introduction to Geophysical Fluid Dynamics, Volume 101, Second Edition:Physical and Numerical Aspects. Englewood Clifts, NJ:Prentice Hall, 320
    da Silva J C B, Buijsman M C, Magalhaes J M. 2015. Internal waves on the upstream side of a large sill of the Mascarene Ridge:a comprehensive view of their generation mechanisms and evolution. Deep-Sea Research:Part I. Oceanographic Research Papers, 99:87-104, doi: 10.1016/j.dsr.2015.01.002
    Grimshaw R, Pelinovsky E, Talipova T, et al. 2010. Internal solitary waves:propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 17(6):633-649, doi: 10.5194/npg-17-633-2010
    Harms I H, Karcher M J. 1999. Modeling the seasonal variability of hydrography and circulation in the Kara Sea. Journal of Geophysical Research, 104(C6):13431-13448, doi: 10.1029/1999JC900048
    IOC, IHO and BODC. 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans. Liverpool, UK:British Oceanographic Data Centre
    Kozlov I E, Kudryavtsev V N, Zubkova E V, et al. 2015. Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data. Izvestiya, Atmospheric and Oceanic Physics, 51(9):1073-1087, doi: 10.1134/S0001433815090121
    Kurkina O E, Talipova T G. 2011. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards and Earth System Science, 11(3):981-986, doi: 10.5194/nhess-11-981-2011
    Lee C Y, Beardsley R C. 1974. The generation of long nonlinear internal waves in a weakly stratified shear flow. Journal of Geophysical Research, 79(3):453-462, doi: 10.1029/JC079i003p00453
    Li Qiang, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7):1345-1363, doi: 10.1175/2011JPO4587.1
    Marshall J, Adcroft A, Hill C, et al. 1997. A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102(C3):5753-5766, doi: 10.1029/96JC02775
    Morozov E G, Paka V T, Bakhanov V V. 2008. Strong internal tides in the Kara Gates Strait. Geophysical Research Letters, 35(16):L16603, doi: 10.1029/2008GL033804
    Morozov E G, Parrilla-Barrera G, Velarde M G, et al. 2003. The Straits of Gibraltar and Kara Gates:a comparison of internal tides. Oceanologica Acta, 26(3):231-241, doi: 10.1016/S0399-1784(03)00023-9
    Pacanowski R C, Philander S G H. 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11(11):1443-1451, doi: 10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
    Pichon A, Morel Y, Baraille R, et al. 2013. Internal tide interactions in the Bay of Biscay:observations and modelling. Journal of Marine Systems, 109-110:S26-S44, doi: 10.1016/j.jmarsys.2011.07.003
    Rippeth T P, Lincoln B J, Yueng-Djern Lenn, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3):191-194, doi: 10.1038/NGEO2350
    Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1):72-86, doi: 10.1016/j.ocemod.2011.07.002
    Vlasenko V, Stashchuk N, Hutter K. 2005. Baroclinic Tides:Theoretical Modeling and Observational Evidence. Cambridge:Cambridge University Press, 372
    Vlasenko V, Stashchuk N, Hutter K, et al. 2003. Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Research:Part I. Oceanographic Research Papers, 50(3):317-338, doi: 10.1016/S0967-0637(03)00018-9
    Vlasenko V, Stashchuk N, Inall M E, et al. 2014. Tidal energy conversion in a global hot spot:On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. Journal of Geophysical Research, 119(6):3249-3265, doi: 10.1002/2013JC009708
    Wang Gang, Qiao Fangli, Dai Dejun. 2010. A 2D-numerical modeling of the generation and propagation of internal solitary waves in the Luzon Strait. Acta Oceanologica Sinica, 29(6):1-11, doi: 10.1007/s13131-010-0071-6
    Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research, 121(11):8268-8286, doi: 10.1002/2016JC012105
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. Journal of Marine Systems, 134:101-112, doi: 10.1016/j.jmarsys.2014.03.002
    Zhao Zhongxiang, Alford M H, Girton J B, et al. 2016. Global observations of open-ocean mode-1 M2 internal tides. Journal of Physical Oceanography, 46(6):1657-1684, doi: 10.1175/JPO-D-15-0105.1
  • 加载中
计量
  • 文章访问数:  662
  • HTML全文浏览量:  37
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02

目录

    /

    返回文章
    返回