Patterns of gas hydrate accumulation in mass transport deposits related to canyon activity: Example from Shenhu drilling area in the South China Sea

FU Chao LI Shengli YU Xinghe LIANG Jinqiang KUANG Zenggui HE Yulin JIN Lina

付超, 李胜利, 于兴河, 梁金强, 匡增桂, 何玉林, 金丽娜. 南海北部水道活动引起的不同类型滑塌体对应的水合物赋存模式[J]. 海洋学报英文版, 2019, 38(5): 118-128. doi: 10.1007/s13131-019-1443-1
引用本文: 付超, 李胜利, 于兴河, 梁金强, 匡增桂, 何玉林, 金丽娜. 南海北部水道活动引起的不同类型滑塌体对应的水合物赋存模式[J]. 海洋学报英文版, 2019, 38(5): 118-128. doi: 10.1007/s13131-019-1443-1
FU Chao, LI Shengli, YU Xinghe, LIANG Jinqiang, KUANG Zenggui, HE Yulin, JIN Lina. Patterns of gas hydrate accumulation in mass transport deposits related to canyon activity: Example from Shenhu drilling area in the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(5): 118-128. doi: 10.1007/s13131-019-1443-1
Citation: FU Chao, LI Shengli, YU Xinghe, LIANG Jinqiang, KUANG Zenggui, HE Yulin, JIN Lina. Patterns of gas hydrate accumulation in mass transport deposits related to canyon activity: Example from Shenhu drilling area in the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(5): 118-128. doi: 10.1007/s13131-019-1443-1

南海北部水道活动引起的不同类型滑塌体对应的水合物赋存模式

doi: 10.1007/s13131-019-1443-1

Patterns of gas hydrate accumulation in mass transport deposits related to canyon activity: Example from Shenhu drilling area in the South China Sea

  • 摘要: 2015~2016年在神狐新钻探区钻遇大量水合物岩心,证实南海北部神狐新钻探区具有较好的水合物成藏环境和勘探前景。结合2008~2009年该区采集的地震资料,我们对晚中新世以来细粒峡谷的沉积特征及其相应的水合物成藏模式进行了分析。通过对大量地震剖面进行解释,发现该区峡谷两侧的隆起上发育大量的滑塌体。本文通过岩心粒度分析,地震相识别分析和水合物测井响应分析等手段综合识别出对水合物成藏有控制作用的三种类型的滑塌体:原生滑塌体、峡谷切割滑塌体、和同生断裂滑塌体。结合沉积速率、流体流速分析和峡谷迁移等沉积学要素对滑塌体成因进行分析,认为峡谷切割滑塌体由于后期峡谷迁移对前期滑塌体切割形成的、同生断裂滑塌体是由于隆起区基底不平引起差异性沉降而形成的。不同类型的滑塌体发育位置不同:原生滑塌体常发育在隆起中坡度较缓的区域、峡谷切割成因滑塌体常发育在不定向迁移的峡谷两侧、同生断裂滑塌体常发育在隆起中坡度起伏较大的区域。三种类型滑塌及其相应的水合物成藏模式不同,其中原生滑塌体有利于水合物成藏,而另外两种类型的滑塌体由于其不能对自由气进行有效封堵而不利于水合物成藏。根据三种滑塌体对水合物成藏的响应指出在粗粒的含有孔虫粉砂岩储层上,覆盖细粒的泥岩对自由气进行封堵有利于水合物成藏,并且多层的泥岩覆盖是造成水合物稳定带中水合物多个分层成矿现象出现的原因。
  • Alsop G I, Marco S, Weinberger R, et al. 2016. Sedimentary and structural controls on seismogenic slumping within mass transport deposits from the Dead Sea Basin. Sedimentary Geology, 344:71-90, doi: 10.1016/j.sedgeo.2016.02.019
    Bangs N L B, Hornbach M J, Berndt C. 2011. The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. Earth and Planetary Science Letters, 310(1-2):105-112, doi: 10.1016/j.epsl.2011.06.022
    Behseresht J, Bryant S L. 2012. Sedimentological control on saturation distribution in Arctic gas-hydrate-bearing sands. Earth and Planetary Science Letters, 341-344:114-127, doi: 10.1016/j.epsl.2012.06.019
    Boswell R, Frye M, Shelander D, et al. 2012. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21:Northern deepwater Gulf of Mexico. Marine and Petroleum Geology, 34(1):134-149, doi: 10.1016/j.marpetgeo.2011.08.010
    Chen Duanxin, Wang Xiujuan, Völker D, et al. 2016. Three dimensional seismic studies of deep-water hazard-related Features on the northern slope of South China Sea. Marine and Petroleum Geology, 77:1125-1139, doi: 10.1016/j.marpetgeo.2016.08.012
    Clift P, Lin Jian, Barckhausen U. 2002. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Marine and Petroleum Geology, 19(8):951-970, doi: 10.1016/S0264-8172(02)00108-3
    Di Celma C. 2011. Sedimentology, architecture, and depositional evolution of a coarse-grained submarine canyon fill from the Gelasian (early Pleistocene) of the Peri-Adriatic basin, Offida, central Italy. Sedimentary Geology, 238(3-4):233-253, doi: 10.1016/j.sedgeo.2011.05.003
    Gong Chenglin, Wang Yingmin, Zheng Rongcai, et al. 2016. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin:Processes, genesis, and implications. Journal of Asian Earth Sciences, 128:116-129, doi: 10.1016/j.jseaes.2016.06.025
    Han Jianhui, Xu Guoqiang, Li Yangyang, et al. 2016. Evolutionary history and controlling factors of the shelf breaks in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 77:179-189, doi: 10.1016/j.marpetgeo.2016.06.009
    Handa Y P. 1990. Effect of hydrostatic pressure and salinity on the stability of gas hydrates. The Journal of Physical Chemistry, 94(6):2652-2657, doi: 10.1021/j100369a077
    He Yunlong, Xie Xinong, Kneller B C, et al. 2013. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 41:264-276
    Holbrook W S, Hoskins H, Wood W T, et al. 1996. Methane hydrate and free gas on the Blake ridge from vertical seismic profiling. Science, 273(5283):1840-1843, doi: 10.1126/science.273.5283.1840
    Horozal S, Kim G Y, Bahk J J, et al. 2015. Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea). Marine and Petroleum Geology, 59:535-562, doi: 10.1016/j.marpetgeo.2014.09.019
    Jeong T, Byun J, Choi H, et al. 2014. Estimation of gas hydrate saturation in the Ulleung basin using seismic attributes and a neural network. Journal of Applied Geophysics, 106:37-49, doi: 10.1016/j.jappgeo.2014.04.006
    Lee M W, Collett T S, Lewis K A. 2012. Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg Ⅱ Alaminos Canyon 21 B well. Marine and Petroleum Geology, 34(1):85-95, doi: 10.1016/j.marpetgeo.2011.06.010
    Li Gang, Yan Wen, Zhong Lifeng, et al. 2015. Provenance of heavy mineral deposits on the northwestern shelf of the South China Sea, evidence from single-mineral chemistry. Marine Geology, 363:112-124, doi: 10.1016/j.margeo.2015.01.015
    Malinverno A. 2010. Marine gas hydrates in thin sand layers that soak up microbial methane. Earth and Planetary Science Letters, 292(3-4):399-408, doi: 10.1016/j.epsl.2010.02.008
    Mitchum R M Jr. 1977. Seismic stratigraphy and global changes of sea level, Part 11, Glossary of terms used in Seismic Stratigraphy. In:Payton C E, ed. Seismic Stratigraphy-Applications to Hydrocarbon Exploration. USA:AAPG Memoir, 205-212
    Riedel M, Bahk J J, Kim H S, et al. 2013b. Seismic facies analyses as aid in regional gas hydrate assessments. Part-I:Classification analyses. Marine and Petroleum Geology, 47:248-268
    Riedel M, Collett T S, Kim H S, et al. 2013a. Large-scale depositional characteristics of the Ulleung Basin and its impact on electrical resistivity and Archie-parameters for gas hydrate saturation estimates. Marine and Petroleum Geology, 47:222-235, doi: 10.1016/j.marpetgeo.2013.03.014
    Scholz N A, Riedel M, Bahk J J, et al. 2012. Mass transport deposits and gas hydrate occurrences in the Ulleung Basin, East Sea-Part 1:Mapping sedimentation patterns using seismic coherency. Marine and Petroleum Geology, 35(1):91-104, doi: 10.1016/j.marpetgeo.2012.03.004
    Sha Zhibin, Liang Jinqiang, Zhang Guangxue, et al. 2015. A seepage gas hydrate system in northern South China Sea:Seismic and well log interpretations. Marine Geology, 366:69-78, doi: 10.1016/j.margeo.2015.04.006
    Shi Xiaobin, Qiu Xuelin, Xia Kanyuan, et al. 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3):265-277, doi: 10.1016/S1367-9120(03)00059-2
    Strozyk F, Huhn K, Strasser M, et al. 2009. New evidence for massive gravitational mass-transport deposits in the southern Cretan Sea, western Mediterranean. Marine Geology, 263(1-4):97-107, doi: 10.1016/j.margeo.2009.04.002
    Vadakkepuliyambatta S, Hornbach M J, Bünz S, et al. 2015. Controls on gas hydrate system evolution in a region of active fluid flow in the SW Barents Sea. Marine and Petroleum Geology, 66:861-872, doi: 10.1016/j.marpetgeo.2015.07.023
    Wang Xiujuan, Collett T S, Lee M W, et al. 2014. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea. Marine Geology, 357:272-292, doi: 10.1016/j.margeo.2014.09.040
    Wang Xiujuan, Wu Shiguo, Lee W, et al. 2011. Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu area, South China Sea. Marine and Petroleum Geology, 28(9):1625-1633, doi: 10.1016/j.marpetgeo.2011.07.002
    Wood W T, Hart P E, Hutchinson D R, et al. 2008. Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi-resolution seismic imagery. Marine and Petroleum Geology, 25(9):952-959, doi: 10.1016/j.marpetgeo.2008.01.015
    Wu Nengyou, Zhang Haiqi, Yang Shengxiong, et al. 2011. Gas hydrate system of Shenhu Area, northern south China Sea:geochemical results. Journal of Geological Research, 2011:370298
    Yu Xinghe, Wang Jianzhong, Liang Jinqiang, et al. 2014. Depositional characteristics and accumulation model of gas hydrates in northern South China Sea. Marine and Petroleum Geology, 56:74-86, doi: 10.1016/j.marpetgeo.2014.03.011
    Zhang Yi, He Lijuan, Wang Jiyang, et al. 2011. Heat flow pattern, base of methane hydrates stability zones and BSRs in Shenhu Area, northern South China Sea. Acta Oceanologica Sinica, 30(1):59-67, doi: 10.1007/s13131-011-0091-x
    Zhou Wei, Wang Yingmin, Gao Xianzhi, et al. 2015. Architecture, evolution history and controlling factors of the Baiyun submarine canyon system from the middle Miocene to Quaternary in the Zhujiang River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 67:389-407, doi: 10.1016/j.marpetgeo.2015.05.015
  • 加载中
计量
  • 文章访问数:  626
  • HTML全文浏览量:  44
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-06

目录

    /

    返回文章
    返回