A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering

LI Jitao LIANG Yongquan ZHANG Jie YANG Jungang SONG Pingjian CUI Wei

李蓟涛, 梁永全, 张杰, 杨俊刚, 宋平舰, 崔伟. 一种使用卫星高度计数据且基于密度聚类的新型海洋中尺度涡自动探测算法[J]. 海洋学报英文版, 2019, 38(5): 134-141. doi: 10.1007/s13131-019-1447-x
引用本文: 李蓟涛, 梁永全, 张杰, 杨俊刚, 宋平舰, 崔伟. 一种使用卫星高度计数据且基于密度聚类的新型海洋中尺度涡自动探测算法[J]. 海洋学报英文版, 2019, 38(5): 134-141. doi: 10.1007/s13131-019-1447-x
LI Jitao, LIANG Yongquan, ZHANG Jie, YANG Jungang, SONG Pingjian, CUI Wei. A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering[J]. Acta Oceanologica Sinica, 2019, 38(5): 134-141. doi: 10.1007/s13131-019-1447-x
Citation: LI Jitao, LIANG Yongquan, ZHANG Jie, YANG Jungang, SONG Pingjian, CUI Wei. A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering[J]. Acta Oceanologica Sinica, 2019, 38(5): 134-141. doi: 10.1007/s13131-019-1447-x

一种使用卫星高度计数据且基于密度聚类的新型海洋中尺度涡自动探测算法

doi: 10.1007/s13131-019-1447-x
基金项目: The National Key R&D Program of China under contract No. 2016YFC1401800; the National Natural Science Foundation of China under contract No. 41576176; the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-02-PAC-YGST2-04, GASI-02-IND-YGST2-04 and GASI-02-SCS-YGST2-04.

A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering

  • 摘要: 中尺度涡旋是海洋中典型的中尺度现象,是海洋中能量传递的运输者,中尺度涡识别与提取是物理海洋学研究的重要内容之一,而中尺度涡自动发现算法是最基础的用于寻找与分析中尺度涡的工具。中尺度涡旋探测工作的数据来源主要为卫星高度计数据融合出的SLA数据,该数据可以客观的描述海洋表层高度状态。中尺度涡表示为SLA闭合等值线所包围的局部等值区域,涡旋识别需要从SLA数据中提取出稳定的闭合等值线结构。针对基于SLA数据中的中尺度涡探测的特点,本文提出了一种新的基于聚类方法的中尺度涡自动识别算法,通过对SLA数据集的分割与筛选将中尺度涡区域与背景区域分离,后建立区域内联系并将其映射到SLA地图上来提取中尺度涡结构。本文算法解决了传统探测算法中参数设定的敏感性问题,不需要进行稳定性测试,算法适应性增强。算法中加入了涡旋筛选机制,保证了结果的涡旋结构的稳定性,提高了识别准确率。在此基础上,本文选取了西北太平洋及中国南海地区进行了中尺度涡探测实验,实验结果展示出了本文算法在较传统算法提高算法效率的同时,也保持着较高的算法稳定性,可以在稳定识别各个单涡结构的同时识别稳定的多涡结构。
  • Ari Sadarjoen I, Post F H. 2000. Detection, quantification, and tracking of vortices using streamline geometry. Computers & Graphics, 24(3):333-341, doi: 10.1016/S0097-8493(00)00029-7
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records:identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2-4):106-119, doi: 10.1016/j.pocean.2008.10.013
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216, doi: 10.1016/j.pocean.2011.01.002
    Doglioli A M, Blanke B, Speich S, et al. 2007. Tracking coherent structures in a regional ocean model with wavelet analysis:application to Cape Basin eddies. Journal of Geophysical Research:Oceans, 112(C5):C05043
    He Yaobin, Tan Haoyu, Luo Wuman, et al. 2014. MR-DBSCAN:a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Frontiers of Computer Science, 8(1):83-99, doi: 10.1007/s11704-013-3158-3
    Henson S A, Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I:Oceanographic Research Papers, 55(2):163-176, doi: 10.1016/j.dsr.2007.11.005
    Liu Yingjie, Chen Ge, Sun Miao, et al. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12):2743-2754, doi: 10.1175/JTECH-D-16-0033.1
    Morrow R, Birol F, Griffin D, et al. 2004. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophysical Research Letters, 31(24):L24311, doi: 10.1029/2004GL020974
    Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research:Oceans, 116(C5):C05002
    Nencioli F, Dong Changming, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight. Journal of Atmospheric and Oceanic Technology, 27(3):564-579, doi: 10.1175/2009JTECHO725.1
    Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3):445-454, doi: 10.1016/0011-7471(70)90059-8
    Waugh D W, Abraham E R, Bowen M M. 2006. Spatial variations of stirring in the surface ocean:a case study of the Tasman Sea. Journal of Physical Oceanography, 36(3):526-542, doi: 10.1175/JPO2865.1
    Yi J, Du Y, He Z, et al. 2014. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Science, 10(1):39-48, doi: 10.5194/os-10-39-2014
    Zhang Chunhua, Li Honglin, Liu Songtao, et al. 2015. Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea. Science China Earth Sciences, 58(12):2249-2259, doi: 10.1007/s11430-015-5101-y
    Zhang Chunhua, Xi Xiaoliang, Liu Songtao, et al. 2014. A mesoscale eddy detection method of specific intensity and scale from SSH image in the South China Sea and the Northwest Pacific. Science China Earth Sciences, 57(8):1897-1906, doi: 10.1007/s11430-014-4839-y
  • 加载中
计量
  • 文章访问数:  577
  • HTML全文浏览量:  56
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-06

目录

    /

    返回文章
    返回