A numerical study of Stokes drift and thermal effects on the oceanic mixed layer

Xuewei Li Dongliang Zhao Zhongshui Zou

Xuewei Li, Dongliang Zhao, Zhongshui Zou. A numerical study of Stokes drift and thermal effects on the oceanic mixed layer[J]. Acta Oceanologica Sinica, 2020, 39(5): 35-45. doi: 10.1007/s13131-019-1448-9
Citation: Xuewei Li, Dongliang Zhao, Zhongshui Zou. A numerical study of Stokes drift and thermal effects on the oceanic mixed layer[J]. Acta Oceanologica Sinica, 2020, 39(5): 35-45. doi: 10.1007/s13131-019-1448-9

doi: 10.1007/s13131-019-1448-9

A numerical study of Stokes drift and thermal effects on the oceanic mixed layer

Funds: The National Natural Science Foundation of China under contract Nos 41876010 and 41276015; the Public Science and Technology Research Funds Projects of Ocean under contrct No. 201505007; the Joint Project for the National Oceanographic Center by the NSFC and Shandong Government under contract No. U1406402; the National Natural Science Foundation of China under contract No. 41806028.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The difference between experiment EXP1-S and EXP1 in the vertical structure of simulated. a, f. Temperature profile (T); b, c, g, h. horizontal velocities (U and V); d, i. turbulence kinetic energy (TKE, q2); and e, j. vertical kinematic viscosity (KM). The colors represent different wind speed, respectively. The top row shows the result forcing by high shortwave radiation 800 W/m2 (a–e), the other row shows that forcing by low short wave radiation 200 W/m2 (f–j).

    Figure  2.  The evolution of sea temperature profile with 2 m/s wind in high vertical resolution model result (EXP2) are shown. The colors represent temperature profile per 1 h, respectively.

    Figure  3.  The evolution of sea temperature profile per 3 h in high vertical resolution model result (EXP2) are shown. The colors represent the control experiments with wind speed from 0 to 10 m/s, respectively.

    Figure  4.  The evolution of sea temperature profile in different control model result. The colors represent temperature profile per 2 h, respectively. Line: EXP1; and line with points: EXP2.

    Figure  5.  The evolution of MLD and SST in two days with idealized forcing: 800 W/m2 solar radiation and wind speeds from weak to strong. Solid black line: EXP1; solid red line: EXP2; black line with points: EXP1-S; and red line with points: EXP2-S.

    Figure  6.  The evolution of MLD and SST in two days with idealized forcing: 200 W/m2 solar radiation and wind speeds from weak to strong. Solid black line: EXP1; solid red line: EXP2; black line with points: EXP1-S; and red line with points: EXP2-S.

    Figure  7.  Observed and simulated SST and MLD at Station Papa for 2012. Black line: observation; blue line: EXP1; green line: EXP1-S; yellow line: EXP2; and red line: EXP2-S.

    Figure  8.  Observed and simulated isotherm depth at Station Papa for 2012. a. EXP1, b. EXP2, c. EXP1-S, d. EXP2-S, and e. observation.

    Figure  9.  Simulated temperature bias profile at Station Papa for 2012. a. EXP1, b. EXP1-S, c. EXP2, and d. EXP2-S.

    Figure  10.  The difference of the net heat flux released into the atmosphere compared with EXP1. Yellow line: EXP2; green line: EXP1-S; and red line: EXP2-S.

    Table  1.   Summery of the experiments used in this study

    ExperimentVertical resolutionStokes driftsIdealized forcingOWS Papa
    Wind speed
    /m·s–1
    Amplitudes of the solar radiation
    /W·m–2
    Wind speed
    /m·s–1
    Solar radiation
    /W·m–2
    EXP1lowno0–20200/800observedobserved
    EXP2highno0–20200/800observedobserved
    EXP1-Slowyes0–20200/800observedobserved
    EXP2-Shighyes0–20200/800observedobserved
    下载: 导出CSV

    Table  2.   Difference between model and observed SST and MLD at Papa for 2012

    BiasEXP1EXP2EXP1-SEXP2-S
    Annual SST/°C1.180.960.570.53
    Summer SST/°C1.981.210.640.48
    Winter MLD/m9.038.3628.94 7.65
    Summer MLD/m13.11 12.11 8.056.17
    下载: 导出CSV
  • [1] Alappattu D P, Wang Qing, Yamaguchi R, et al. 2017. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies. Journal of Geophysical Research: Oceans, 122(8): 6470–6481. doi: 10.1002/2017JC012688
    [2] Ardhuin F, Jenkins A D. 2006. On the interaction of surface waves and upper ocean turbulence. Journal of Physical Oceanography, 36(3): 551–557. doi: 10.1175/JPO2862.1
    [3] Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. 2018. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions. Journal of Geophysical Research: Oceans, 123(4): 2934–2944. doi: 10.1002/2017JC013038
    [4] Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography, 24(12): 2546–2559. doi: 10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
    [5] Donlon C J, Minnett P J, Gentemann C, et al. 2002. Toward improved validation of satellite sea surface skin temperature measurements for climate research. Journal of Climate, 15(4): 353–369. doi: 10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2
    [6] Fairall C W, Bradley E F, Godfrey J S, et al. 1996a. Cool-skin and warm-layer effects on sea surface temperature. Journal of Geophysical Research: Oceans, 101(C1): 1295–1308. doi: 10.1029/95JC03190
    [7] Fairall C W, Bradley E F, Rogers D P, et al. 1996b. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. Journal of Geophysical Research: Oceans, 101(C2): 3747–3764. doi: 10.1029/95JC03205
    [8] Halpern D, Reed R K. 1976. Heat Budget of the Upper Ocean Under Light Winds. Journal of Physical Oceanography, : doi: 10.1175/1520-0485(1976)006<0972:hbotuo>2.0.co;2
    [9] Harcourt R R, D’Asaro E A. 2008. Large-eddy simulation of Langmuir turbulence in pure wind seas. Journal of Physical Oceanography, 38(7): 1542–1562. doi: 10.1175/2007JPO3842.1
    [10] Huang Chuanjiang, Qiao Fangli, Song Zhenya, et al. 2011. Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme. Journal of Geophysical Research: Oceans, 116(C1): C01007. doi: 10.1029/2010JC006320
    [11] Kantha L H, Clayson C A. 1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research: Oceans, 99(C12): 25235–25266. doi: 10.1029/94JC02257
    [12] Kantha L H, Clayson C A. 2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling, 6(2): 101–124. doi: 10.1016/S1463-5003(02)00062-8
    [13] Kantha L, Tamura H, Miyazawa Y. 2014. Comment on “wave-turbulence interaction and its induced mixing in the upper ocean” by Huang and Qiao. Journal of Geophysical Research: Oceans, 119(2): 1510–1515. doi: 10.1002/2013JC009318
    [14] Katsaros K B, Liu W T, Businger J A, et al. 1977. Heat thermal structure in the interfacial boundary layer measured in an open tank of water in turbulent free convection. Journal of Fluid Mechanics, 83(2): 311–335. doi: 10.1017/S0022112077001219
    [15] Kenyon K E. 1969. Stokes drift for random gravity waves. Journal of Geophysical Research, 74(28): 6991–6994. doi: 10.1029/JC074i028p06991
    [16] Kumar N, Feddersen F. 2017. The effect of stokes drift and transient rip currents on the inner shelf. Part II: With stratification. Journal of Physical Oceanography, 47(1): 243–260. doi: 10.1175/JPO-D-16-0077.1
    [17] Martin P J. 1985. Simulation of the mixed layer at OWS November and Papa with several models. Journal of Geophysical Research: Oceans, 90(C1): 903–916. doi: 10.1029/JC090iC01p00903
    [18] Matthews A J, Baranowski D B, Heywood K J, et al. 2014. The surface diurnal warm layer in the Indian ocean during CINDY/DYNAMO. Journal of Climate, Special issue: 9101–9122. doi: 10.1175/JCLI-D-14-00222.1
    [19] McWilliams J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334(1): 1–30. doi: 10.1017/S0022112096004375
    [20] Mellor G L. 2001. One-dimensional, ocean surface layer modeling: A problem and a solution. Journal of Physical Oceanography, 31(3): 790–809. doi: 10.1175/1520-0485(2001)031<0790:ODOSLM>2.0.CO;2
    [21] Mellor G, Blumberg A. 2004. Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34(3): 693–698. doi: 10.1175/2517.1
    [22] Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851–875. doi: 10.1029/RG020i004p00851
    [23] Min H S, Noh Y. 2004. Influence of the surface heating on Langmuir circulation. Journal of Physical Oceanography, 34(12): 2630–2641. doi: 10.1175/JPOJPO-2654.1
    [24] Paulson C A, Simpson J J. 1981. The temperature difference across the cool skin of the ocean. Journal of Geophysical Research: Oceans, 86(C11): 11044–11054. doi: 10.1029/jc086ic11p11044
    [25] Saunders P M. 1967. The temperature at the ocean-air interface. Journal of the Atmospheric Sciences, 24(3): 269–273. doi: 10.1175/1520-0469(1967)024<0269:ttatoa>2.0.co;2
    [26] Smith T A, Chen Sue, Campbell T, et al. 2013. Ocean-wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004). Ocean Modelling, 69: 181–194. doi: 10.1016/j.ocemod.2013.06.003
    [27] Soloviev A, Lukas R. 1997. Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Research Part I: Oceanographic Research Papers, 44(6): doi: 10.1016/S0967-0637(96)00124-0
    [28] Stramma L, Cornillon P, Weller R A, et al. 1986. Large diurnal sea surface temperature variability: Satellite and In Situ Measurements. Journal of Physical Oceanography, : doi: 10.1175/1520-0485(1986)016<0827:ldsstv>2.0.co;2
    [29] Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. Journal of Fluid Mechanics, 593: 405–452. doi: 10.1017/S002211200700897X
    [30] Teixeira M A C, Belcher S E. 2002. On the distortion of turbulence by a progressive surface wave. Journal of Fluid Mechanics, 458: 229–267. doi: 10.1017/S0022112002007838
    [31] Tseng W L, Tsuang B J, Keenlyside N S, et al. 2015. Resolving the upper-ocean warm layer improves the simulation of the Madden-Julian oscillation. Climate Dynamics, 44(5–6): 1487–1503. doi: 10.1007/s00382-014-2315-1
    [32] Tu C Y, Tsuang B J. 2005. Cool-skin simulation by a one-column ocean model. Geophysical Research Letters, 32(22): L22602. doi: 10.1029/2005GL024252
    [33] Ward B, Donelan M A. 2006. Thermometric measurements of the molecular sublayer at the air-water interface. Geophysical Research Letters, 33(7): L07605. doi: 10.1029/2005GL024769
    [34] Wilson B W. 1965. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deutsche Hydrografische Zeitschrift, 18(3): 114–130. doi: 10.1007/BF02333333
    [35] Wong E W, Minnett P J. 2018. The response of the ocean thermal skin layer to variations in incident infrared radiation. Journal of Geophysical Research: Oceans, 123(4): 2475–2493. doi: 10.1002/2017JC013351
    [36] Wu Jin. 1985. On the cool skin of the ocean. Boundary-Layer Meteorology, 31(2): 203–207. doi: 10.1007/BF00121179
    [37] Wu Lichuan, Rutgersson A, Sahlée E. 2015. Upper-ocean mixing due to surface gravity waves. Journal of Geophysical Research: Oceans, 120(12): 8210–8228. doi: 10.1002/2015JC011329
    [38] Wurl O, Landing W M, Mustaffa N I H, et al. 2019. The ocean’s skin layer in the tropics. Journal of Geophysical Research: Oceans, 124(1): 59–74. doi: 10.1029/2018JC014021
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  54
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 录用日期:  2019-11-12
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回