Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary

LIU Guangping CAI Shuqun

刘广平, 蔡树群. 基于波-流耦合模型的珠江口悬浮泥沙数值模拟[J]. 海洋学报英文版, 2019, 38(7): 22-35. doi: 10.1007/s13131-019-1455-3
引用本文: 刘广平, 蔡树群. 基于波-流耦合模型的珠江口悬浮泥沙数值模拟[J]. 海洋学报英文版, 2019, 38(7): 22-35. doi: 10.1007/s13131-019-1455-3
LIU Guangping, CAI Shuqun. Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary[J]. Acta Oceanologica Sinica, 2019, 38(7): 22-35. doi: 10.1007/s13131-019-1455-3
Citation: LIU Guangping, CAI Shuqun. Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary[J]. Acta Oceanologica Sinica, 2019, 38(7): 22-35. doi: 10.1007/s13131-019-1455-3

基于波-流耦合模型的珠江口悬浮泥沙数值模拟

doi: 10.1007/s13131-019-1455-3
基金项目: The National Natural Science Foundation of China under contract Nos 41890851 and 41521005; the Key Research Program of Frontier Sciences, Chinese Academy of Sciences under contract No. QYZDJ-SSW-DQC034; the Foundation of Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences under contract No. ISEE2018PY05.

Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary

  • 摘要: 为研究珠江口悬浮泥沙输运动力机制,本文发展了一套三维波、流、泥沙耦合数值模型。模型结果与观测数据吻合较好,统计显示模型获得良好的评分分值。利用数值模拟研究了不同强迫(径流,波浪和风)对珠江口中悬浮泥沙的影响。模型结果表明,河口重力环流对珠江口最大浑浊带的发展起着重要作用,特别是在小潮期间。另外,径流的增加可导致泥沙向海输运。底部的悬浮泥沙浓度随着波浪底部轨迹速度和波高的增大而增加。由于西滩水深较浅,波浪对西滩悬浮泥沙的影响大于东槽。西南风引起的波浪对悬沙的影响大于东北风引起的波浪的影响,而东北风致流对悬沙的影响略大于对西南风致流的影响。在其他条件相同情况下,稳定的西南风比稳定的东北风更有利于伶仃洋悬浮泥沙浓度的增加;在稳定的西南风下,伶仃洋平均悬浮泥沙浓度约为稳定东北风下的1.1倍。
  • Battjes J A, Janssen J P F M. 1978. Energy loss and set-up due to breaking random waves. In:Proceedings of 16th Conference on Coastal Engineering. Hamburg, Germany:ASCE, 569-587
    Bever A J, Harris C K. 2014. Storm and fair-weather driven sediment-transport within Poverty Bay, New Zealand, evaluated using coupled numerical models. Continental Shelf Research, 86:34-51, doi: 10.1016/j.csr.2013.07.012
    Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions:1. model description and validation. Journal of Geophysical Research:Oceans, 104(4):7649-7666
    Boyer T P, Levitus S, Antonov J I, et al. 2005. Linear trends in salinity for the world ocean, 1955-1998. Geophysical Research Letters, 32(1):L01604
    Chapman D C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. Journal of Physical Oceanography, 15(8):1060-1075, doi: 10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2
    Chen Yong, Wai W H O, Li Y S, et al. 1999. Three-dimensional numerical modeling of cohesive sediment transport by tidal current in Pearl River Estuary. International Journal of Sediment Research, 14(2):107-123
    Chen Y D, Chen Xiaohong. 2008. Modeling transport and distribution of suspended sediments in pearl river estuary. Journal of Coastal Research, (S52):163-170
    Cheng Gaolei, Gong Wenping, Wang Yaping, et al. 2017. Modeling the circulation and sediment transport in the Beibu Gulf. Acta Oceanologica Sinica, 36(4):21-30, doi: 10.1007/s13131-017-1012-4
    Dong Lixian, Su Jilan, Li Yan, et al. 2006. Physical processes and sediment dynamics in the pearl river. In:Wolanski E, ed. The Environment in Asia Pacific Harbours. Dordrecht:Springer, 127-137
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2):183-204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    Flather R A. 1976. A tidal model of the northwest European continental shelf. Memoires de la Societe Royale des Sciences de Liege, 6(10):141-164
    Ganju N K, Lentz S J, Kirincich A R, et al. 2011. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model. Journal of Geophysical Research:Oceans, 116(10):C10036
    Giosan L, Syvitski J, Constantinescu S, et al. 2014. Climate change:protect the world's deltas. Nature, 516(7529):31-33, doi: 10.1038/516031a
    Gong Wenping, Jia Liangwen, Shen Jian, et al. 2014. Sediment transport in response to changes in river discharge and tidal mixing in a funnel-shaped micro-tidal estuary. Continental Shelf Research, 76:89-107, doi: 10.1016/j.csr.2014.01.006
    Guan Weibing, Wong Liya, Xu Dongfeng. 2003. Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang River estuary. PsrtⅠ. model development. Acta Oceanologica Sinica (in Chinese), 25(1):52-56
    Haidvogel D B, Arango H, Budgell W P, et al. 2008. Ocean forecasting in terrain-following coordinates:formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227(7):3595-3624, doi: 10.1016/j.jcp.2007.06.016
    Harrison P J, Yin Kedong, Lee J H W, et al. 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28(12):1405-1415, doi: 10.1016/j.csr.2007.02.011
    Hu Jiatang, Li Shiyu. 2009. Modeling the mass fluxes and transformations of nutrients in the Pearl River Delta, China. Journal of Marine Systems, 78(1):146-167, doi: 10.1016/j.jmarsys.2009.05.001
    Hu Jiatang, Li Shiyu, Geng Bingxu. 2011. Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China. Journal of Marine Systems, 88(2):252-266, doi: 10.1016/j.jmarsys.2011.05.002
    Jia Liangwen, Wen Yi, Pan Shunqi, et al. 2015. Wave-current interaction in a river and wave dominant estuary:a seasonal contrast. Applied Ocean Research, 52:151-166, doi: 10.1016/j.apor.2015.06.004
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3):437-472, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    Komen G J, Hasselmann K, Hasselmann K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8):1271-1285, doi: 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
    Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3):324-336, doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
    Liu Runqi, Wang Yaping, Gao Jianhua, et al. 2016. Turbidity maximum formation and its seasonal variations in the Zhujiang (Pearl River) Estuary, southern China. Acta Oceanologica Sinica, 35(8):22-31, doi: 10.1007/s13131-016-0897-7
    Luo Xianlin, Yang Qingshu, Jia Liangwen, et al. 2002. River-bed Evolution of the Pearl River Delta. Guangzhou:Sun Yat-sen Univeristy Press (in Chinese), 91-206
    Madsen O S, Poon Y K, Graber H C. 1988. Spectral wave attenuation by bottom friction:theory. In:Proceedings of the 21st Conference on Coastal Engineering. Costa del Sol, Malaga:ASCE, 492-504
    Mao Qingwen, Shi Ping, Yin Kedong, et al. 2004. Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16):1797-1808, doi: 10.1016/j.csr.2004.06.008
    Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4):851-875, doi: 10.1029/RG020i004p00851
    Orlanski I. 1976. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21(3):251-269, doi: 10.1016/0021-9991(76)90023-1
    Ralston D K, Warner J C, Geyer W R, et al. 2013. Sediment transport due to extreme events:the Hudson River estuary after tropical storms Irene and Lee. Geophysical Research Letters, 40(20):5451-5455, doi: 10.1002/2013GL057906
    Shchepetkin A F, Mcwilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347-404, doi: 10.1016/j.ocemod.2004.08.002
    Smolarkiewicz P K. 1984. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. Journal of Computational Physics, 54(2):325-362, doi: 10.1016/0021-9991(84)90121-9
    Song Yuhe, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1):228-244, doi: 10.1006/jcph.1994.1189
    Song Dehai, Wang Xiaohua. 2013. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009:2. numerical simulations. Journal of Geophysical Research:Oceans, 118(10):5568-5590, doi: 10.1002/jgrc.20411
    Styles R, Glenn S M. 2000. Modeling stratified wave and current bottom boundary layers in the continental shelf. Journal of Geophysical Research:Oceans, 105(10):24119-24139
    Syvitski J P M, Vörösmarty C J, Kettner A J, et al. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5270):376-380
    Syvitski J P M, Kettner A J, Overeem I, et al. 2009. Sinking deltas due to human activities. Nature Geoscience, 2(10):681-686, doi: 10.1038/ngeo629
    Wai O W H, Wang C H, Li Y S, et al. 2004. The formation mechanisms of turbidity maximum in the Pearl River estuary, China. Marine Pollution Bulletin, 48(5-6):441-448, doi: 10.1016/j.marpolbul.2003.08.019
    Wang Chonghao, Wai W H O, Li Y S, et al. 2006. Modelling of the wave-current interaction in the Pearl River Estuary. Journal of Hydrodynamics, Ser B, 18(3):159-165, doi: 10.1016/S1001-6058(06)60047-4
    Warner J C, Geyer W R, Lerczak J A. 2005. Numerical modeling of an estuary:a comprehensive skill assessment. Journal of Geophysical Research C:Oceans, 110(5):C05001
    Warner J C, Sherwood C R, Signell R P, et al. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10):1284-1306
    Wong L A, Chen J C, Xue Huijie, et al. 2003. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters:1. simulations and comparison with observations. Journal of Geophysical Research, 108(C5):3156
    Xia Xiaoming, Li Yan, Yang Hui, et al. 2004. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China. Continental Shelf Research, 24(16):1809-1826, doi: 10.1016/j.csr.2004.06.009
    Xue Zuo, He Ruoying, Liu J P, et al. 2012. Modeling transport and deposition of the Mekong River sediment. Continental Shelf Research, 37:66-78, doi: 10.1016/j.csr.2012.02.010
    Yao Zhangmin, Wang Yongyong, Li Aiming. 2009. Primary analysis of water distribution ratio variation in main waterway in Pearl River Delta. Pearl River (in Chinese), (2):43-45, 51
    Yin Yi, Jiang Lifang, Zhang Zhixu, et al. 2017. Statistical analysis of wave characteristics in the Pearl River Estuary. Journal of Tropical Oceanography (in Chinese), 36(4):60-66
    Zhang Heng, Li Shiyu. 2010. Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer. Journal of Marine Systems, 79(1-2):65-88, doi: 10.1016/j.jmarsys.2009.07.002
    Zhang Wei, Wei Xiaoyan, Zheng Jinhai, et al. 2012. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Continental Shelf Research, 38:35-46, doi: 10.1016/j.csr.2012.02.017
    Zhao Huanting. 1990. Evolution of the Pearl River Estuary. Beijing:China Ocean Press (in Chinese), 1-357
    Zhu Zenan, Wang Huiqun, Guan Weibing, et al. 2013. 3D numerical study on cohesive sediment dynamics of the Pearl River Estuary in the wet season. Journal of Marine Sciences (in Chinese), 31(3):25-35
    Zu Tingting, Gan Jianping, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 55(2):137-154, doi: 10.1016/j.dsr.2007.10.007
  • 加载中
计量
  • 文章访问数:  641
  • HTML全文浏览量:  67
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-01

目录

    /

    返回文章
    返回