Petrology and geochemistry of serpentinized peridotites from Hahajima Seamount in Izu-Bonin forearc region

Wu Tuoyu Tian Liyan Gao Jinwei Dong Yanhui

吴拓宇, 田丽艳, 高金尉, 董彦辉. 伊豆-小笠原前弧地区Hahajima海山蛇纹石化橄榄岩岩石学和地球化学研究[J]. 海洋学报英文版, 2019, 38(11): 99-110. doi: 10.1007/s13131-019-1469-x
引用本文: 吴拓宇, 田丽艳, 高金尉, 董彦辉. 伊豆-小笠原前弧地区Hahajima海山蛇纹石化橄榄岩岩石学和地球化学研究[J]. 海洋学报英文版, 2019, 38(11): 99-110. doi: 10.1007/s13131-019-1469-x
Wu Tuoyu, Tian Liyan, Gao Jinwei, Dong Yanhui. Petrology and geochemistry of serpentinized peridotites from Hahajima Seamount in Izu-Bonin forearc region[J]. Acta Oceanologica Sinica, 2019, 38(11): 99-110. doi: 10.1007/s13131-019-1469-x
Citation: Wu Tuoyu, Tian Liyan, Gao Jinwei, Dong Yanhui. Petrology and geochemistry of serpentinized peridotites from Hahajima Seamount in Izu-Bonin forearc region[J]. Acta Oceanologica Sinica, 2019, 38(11): 99-110. doi: 10.1007/s13131-019-1469-x

伊豆-小笠原前弧地区Hahajima海山蛇纹石化橄榄岩岩石学和地球化学研究

doi: 10.1007/s13131-019-1469-x
基金项目: The National Natural Science Foundation of China under contract Nos 41506047, 41876044 and 91858214; the Chinese Academy of Sciences’ Strategic Priority Research Program Grant under contract Nos XDB06030103 and XDB06030204.

Petrology and geochemistry of serpentinized peridotites from Hahajima Seamount in Izu-Bonin forearc region

  • 摘要: 含水量高达13%的蛇纹岩是俯冲带化学循环的重要储库。在过去二十年间,前弧地幔蛇纹岩在许多地方被相继发现。本文针对采自伊豆-小笠原海沟和马里亚纳海沟交界处Hahajima海山的超基性和基性岩石样品进行了岩石学和地球化学研究。研究结果表明超基性岩石样品蛇纹石化明显,橄榄石矿物都被蛇纹石类矿物所替代。全岩地球化学分析结果表明Hahajima海山蛇纹石化橄榄岩富集MgO (~42%),但其Al2O3、CaO、稀土元素和高场强元素含量极低,与其原岩的亏损特性相对应。模式计算显示Hahajima海山橄榄岩是经过15-25%的地幔部分熔融的残余体,比其他伊豆-小笠原-马里亚纳前弧海山(Torishima,Conical,South Chamorro海山)橄榄岩的熔融程度低(> 25%)。尽管这四座前弧海山的蛇纹岩都富集流体活动元素(Li,Sr,Pb,U),但Hahajima海山的样品并不富集Cs,Rb,且U含量更高,这表明是Hahajima海山蛇纹石化橄榄岩的地球化学特征是地幔楔高度部分熔融及海水渗入至地幔楔中综合作用的结果。
  • Alt J C, Shanks III W C. 2006. Stable isotope compositions of serpentinite seamounts in the Mariana forearc:serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters, 242(3-4):272-285
    Barnes J D, Sharp Z D, Fischer T P. 2008. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology, 36(11):883-886, doi: 10.1130/G25182A.1
    Bebout G E, Barton M D. 2002. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange-insights into the geochemical evolution of the slab-mantle interface. Chemical Geology, 187(1-2):79-106
    Davies J H. 1999. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature, 398(6723):142-145, doi: 10.1038/18202
    Deschamps F, Godard M, Guillot S, et al. 2013. Geochemistry of subduction zone serpentinites:a review. Lithos, 178:96-127, doi: 10.1016/j.lithos.2013.05.019
    Deschamps F, Guillot S, Godard M, et al. 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23(3):171-178, doi: 10.1111/j.1365-3121.2011.00995.x
    Fryer P B. 1992. A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 593
    Fryer P, Lockwood J P, Becker N, et al. 2000. Significance of serpentine mud volcanism in convergent margins. In:Dilek Y, Moores E M, Elthon D, et al., eds. Ophiolites and Oceanic Crust:New Insights from Field Studies and Ocean Drilling Program. Boulder, Colorado:Special Papers Geological Society of America, 35-51
    Fryer P, Salisbury M H. 2006. Leg 195 synthesis:site 1200-serpentinite seamounts of the Izu-Bonin/Mariana convergent plate margin (ODP Leg 125 and 195 drilling results). In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 1-30
    Fryer P B, Wheat C G, Williams T, et al. 2018. Expedition 366 summary. In:Fryer, P, Wheat C G, Williams T, et al., eds. Proceedings of the International Ocean Discovery Program, 366. College Station, TX:International Ocean Discovery Program, 10.14379/iodp.proc.366.101.2018
    Fujioka K, Tanaka T, Aoike K. 1995. Serpentine seamount in Izu-Bonin and Mariana forearcs-observation by a submersible and its relation to onland serpentinite belt. Journal of Geography, 104(3):473-494, doi: 10.5026/jgeography.104.3_473
    Fujioka K, Tokunaga W, Yokose H, et al. 2005. Hahajima seamount:an enigmatic tectonic block at the junction between the Izu-Bonin and Mariana Trenches. Island Arc, 14(4):616-622, doi: 10.1111/j.1440-1738.2005.00488.x
    Gao S, Luo T C, Zhang B R, et al. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11):1959-1975, doi: 10.1016/S0016-7037(98)00121-5
    Govolov I N, Palandzhian S A, Tararin I A, et al. 1995. Ophiolites, boninites, and basalts of an inner slope of the Izu-Bonin Trench. In:Tokuyama H, Shcheka A, Isezaki N, et al., eds. Geology and Geophysics of the Philippine Sea. Tokyo:Terra Scientific Publishing Company, 279-309
    Hart S R, Zindler A. 1986. In search of a bulk-earth composition. Chemical Geology, 57(3-4):247-267
    Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31(6):525-528, doi: 10.1130/0091-7613(2003)031<0525:VFFAAC>2.0.CO;2
    Hofmann A W. 1997. Mantle geochemistry:the message from oceanic volcanism. Nature, 385(6613):219-229, doi: 10.1038/385219a0
    Hulme S M, Wheat C G, Fryer P, et al. 2010. Pore water chemistry of the Mariana serpentinite mud volcanoes:a window to the seismogenic zone. Geochemistry, Geophysics, Geosystems, 11(1):Q01X09
    Ishii T. 1981. Pyroxene geothermometry of basalts and an andesite from the Palau-Kyushu and West Mariana ridges. Deep Sea Drilling Project Leg 59. In:Kroenke L, Scott R, eds. Initial Report of Deep Sea Drilling Project, 59. Washington DC:Initial Report DSDP, 693-718
    Ishii T, Nasu N, Kobayashi K, et al. 1985. Dredged samples from the Ogasawara fore-arc seamount of 'Ogasawara Paleoland'-'Fore-arc Ophiolite'. In:Formation of Active Ocean Margins. Tokyo:Terra Scientific Publishing Company, 307-342
    Ishii T, Robinson P T, Maekawa H, et al. 1992. Petrological studies of peridotites from diapiric serpentinites seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 445-485
    Ishii T, Sato H, Haraguchi S, et al. 2000. Petrological characteristics of peridotites from serpentinite seamounts in the Izu-Ogasawara-Mariana Forearc. Journal of Geography, 109(4):517-530, doi: 10.5026/jgeography.109.4_517
    Ishiwatari A, Ichiyama Y. 2004. Alaskan-type plutons and ultramafic lavas in Far East Russia, Northeast China, and Japan. International Geology Review, 46(4):316-331, doi: 10.2747/0020-6814.46.4.316
    Ishiwatari A, Yanagida Y, Li Y B, et al. 2006. Dredge petrology of the boninite-and adakite-bearing Hahajima Seamount of the Ogasawara (Bonin) forearc:an ophiolite or a serpentinite seamount?. Island Arc, 15(1):102-118, doi: 10.1111/j.1440-1738.2006.00512.x
    Kahl W A, Jöns N, Bach W, et al. 2015. Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle. Lithos, 227:1-20, doi: 10.1016/j.lithos.2015.03.015
    Kamimura A, Kasahara J, Shinohara M, et al. 2002. Crustal structure study at the Izu-Bonin subduction zone around 31°N:implications of serpentinized materials along the subduction plate boundary. Physics of the Earth and Planetary Interiors, 132(1-3):105-129
    Kastner M, Solomon E A, Harris R N, et al. 2014. Fluid origins, thermal regimes, and fluid and solute fluxes in the forearc of subduction zones. Developments in Marine Geology, 7:671-733, doi: 10.1016/B978-0-444-62617-2.00022-0
    Kelley K A, Plank T, Newman S, et al. 2010. Mantle melting as a function of water content beneath the Mariana Arc. Journal of Petrology, 51(8):1711-1738, doi: 10.1093/petrology/egq036
    Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380(6571):237-240, doi: 10.1038/380237a0
    King R L, Bebout G E, Moriguti T, et al. 2006. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation:obstacles to identification of fluid sources to arc volcanics. Earth and Planetary Science Letters, 246(3-4):288-304
    Kodolányi J, Pettke T, Spandler C, et al. 2012. Geochemistry of ocean floor and fore-arc serpentinites:constraints on the ultramafic input to subduction zones. Journal of Petrology, 53(2):235-270, doi: 10.1093/petrology/egr058
    Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust:1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148(1-2):193-205
    Korenaga J. 2017. On the extent of mantle hydration caused by plate bending. Earth and Planetary Science Letters, 457:1-9, doi: 10.1016/j.epsl.2016.10.011
    Langmuir C H, Bézos A, Escrig S, et al. 2006. Chemical systematics and hydrous melting of the mantle in back-arc basins. In:Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. Washington, DC:American Geophysical Union, 87-146
    Leeman W P. 2013. Boron and other fluid-mobile elements in volcanic arc lavas:implications for subduction processes. In:Bebout G E, Scholl D W, Kirby S H, et al, eds. Subduction:Top to Bottom. Washington, DC:American Geophysical Union, 269-276
    Li Y B, Kimura J I, Machida S, et al. 2013. High-Mg adakite and low-Ca boninite from a Bonin fore-arc seamount:implications for the reaction between slab melts and depleted mantle. Journal of Petrology, 54(6):1149-1175, doi: 10.1093/petrology/egt008
    Liu Y S, Zong K Q, Kelemen P B, et al. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2):133-153
    Marschall H R, Altherr R, Rüpke L. 2007. Squeezing out the slab-modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chemical Geology, 239(3-4):323-335
    Michael P J, Bonatti E. 1985. Peridotite composition from the North Atlantic:regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73(1):91-104, doi: 10.1016/0012-821X(85)90037-8
    Miura R, Nakamura Y, Koda K, et al. 2004. "Rootless" serpentinite seamount on the southern Izu-Bonin forearc:implications for basal erosion at convergent plate margins. Geology, 32(6):541-544, doi: 10.1130/G20319.1
    Mottl M J. 1992. Pore waters from serpentine seamounts in the Mariana and Izu-Bonin Forearcs, Leg 125:evidence for volatiles from the subducting slab. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 373-387
    Mottl M J, Komor S C, Fryer P, et al. 2003. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano:Ocean Drilling Program Leg 195. Geochemistry, Geophysics, Geosystems, 4(11):9009
    Mottl M J, Wheat C G, Fryer P, et al. 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochimica et Cosmochimica Acta, 68(23):4915-4933, doi: 10.1016/j.gca.2004.05.037
    Niu Y L. 2004. Bulk-rock major and trace element compositions of abyssal peridotites:implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12):2423-2458, doi: 10.1093/petrology/egh068
    Noll P D Jr, Newsom H E, Leeman W P, et al. 1996. The role of hydrothermal fluids in the production of subduction zone magmas:evidence from siderophile and chalcophile trace elements and boron. Geochimica et Cosmochimica Acta, 60(4):587-611, doi: 10.1016/0016-7037(95)00405-X
    Ohara Y. 2006. Mantle process beneath Philippine Sea back-arc spreading ridges:a synthesis of peridotite petrology and tectonics. Island Arc, 15(1):119-129, doi: 10.1111/j.1440-1738.2006.00515.x
    Okamura H, Arai S, Kim Y U. 2006. Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineralogical Magazine, 70(1):15-26, doi: 10.1180/0026461067010310
    Palme H, O'Neill H S C. 2014. Cosmochemical estimates of mantle composition. In:Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford:Elsevier-Pergamon, 1-39
    Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125):evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9):1577-1618, doi: 10.1093/petroj/39.9.1577
    Parkinson I J, Pearce J A, Thirlwall M F, et al. 1992. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 487-506
    Pearce J A, Parkinson I J. 1993. Trace element models for mantle melting:application to volcanic arc petrogenesis. In:Prichard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publication, 76:373-403
    Peters D, Bretscher A, John T, et al. 2017. Fluid-mobile elements in serpentinites:constraints on serpentinisation environments and element cycling in subduction zones. Chemical Geology, 466:654-666, doi: 10.1016/j.chemgeo.2017.07.017
    Ryan J G, Morris J, Tera F, et al. 1995. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science, 270(5236):625-627, doi: 10.1126/science.270.5236.625
    Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5):Q05004
    Savov I P, Guggino S, Ryan J G, et al. 2005a. Geochemistry of serpentinite muds and metamorphic rocks from the mariana forearc, ODP sites 1200 and 778-779, South Chamorro and conical seamounts. In:Proceedings of the Ocean Drilling Program, Scientific Results. TX:Ocean Drilling Program, 1-49
    Savov I P, Ryan J G, Chan L H, et al. 2002. Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc-implications for recycling at subduction zones. Geochimica et Cosmochimica Acta, 66:A670
    Savov I P, Ryan J G, D'Antonio M, et al. 2005b. Geochemistry of serpentinized peridotites from the Mariana forearc conical seamount, ODP Leg 125:implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4):Q04J15
    Savov I P, Ryan J G, D'Antonio M, et al. 2007. Shallow slab fluid release across and along the Mariana arc-basin system:insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research:Solid Earth, 112(B9):B09205
    Shaw A M, Hauri E H, Fischer T P, et al. 2008. Hydrogen isotopes in Mariana arc melt inclusions:implications for subduction dehydration and the deep-Earth water cycle. Earth Planetary Science Letters, 275(1-2):138-145
    Singer B S, Jicha B R, Leeman W P, et al. 2007. Along-strike trace element and isotopic variation in Aleutian Island arc basalt:subduction melts sediments and dehydrates serpentine. Journal of Geophysical Research:Solid Earth, 112(B6):B06206
    Stalder R, Foley S F, Brey G P, et al. 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1 200℃ and 3.0-5.7 GPa:new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 62(10):1781-1801, doi: 10.1016/S0016-7037(98)00101-X
    Stern R J. 2002. Subduction zones. Review of Geophysics, 40(4):1012, doi: 10.1029/2001RG000108
    Stern R J, Kohut E, Bloomer S H, et al. 2006. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc:no role for sediments, are serpentinites important?. Contributions to Mineralogy and Petrology, 151(2):202-221, doi: 10.1007/s00410-005-0055-2
    Straub S M, Layne G D. 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth and Planetary Science Letters, 198(1-2):25-39
    Straub S M, Layne G D. 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks:implications for volatile recycling in subduction zones. Geochimica et Cosmochimica Acta, 67(21):4179-4203, doi: 10.1016/S0016-7037(03)00307-7
    Taylor R N, Nesbitt R W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth and Planetary Science Letters, 164(1-2):79-98
    Tonarini S, Agostini S, Doglioni C, et al. 2007. Evidence for serpentinite fluid in convergent margin systems:the example of El Salvador (Central America) arc lavas. Geochemistry, Geophysics, Geosystems, 8(9):Q09014
    Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212):858-861, doi: 10.1126/science.268.5212.858
    Woodhead J, Eggins S, Gamble J. 1993. High field strength and transition element systematics in island arc and back-arc basin basalts:evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4):491-504, doi: 10.1016/0012-821X(93)90078-N
    Wunder B, Schreyer W. 1997. Antigorite:high-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41(1-3):213-227
  • 加载中
计量
  • 文章访问数:  330
  • HTML全文浏览量:  38
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07

目录

    /

    返回文章
    返回