Identification and census statistics of multicore eddies based on sea surface height data in global oceans

Wei Cui Wei Wang Jie Zhang Jungang Yang

Wei Cui, Wei Wang, Jie Zhang, Jungang Yang. Identification and census statistics of multicore eddies based on sea surface height data in global oceans[J]. Acta Oceanologica Sinica, 2020, 39(1): 41-51. doi: 10.1007/s13131-019-1519-y
Citation: Wei Cui, Wei Wang, Jie Zhang, Jungang Yang. Identification and census statistics of multicore eddies based on sea surface height data in global oceans[J]. Acta Oceanologica Sinica, 2020, 39(1): 41-51. doi: 10.1007/s13131-019-1519-y

doi: 10.1007/s13131-019-1519-y

Identification and census statistics of multicore eddies based on sea surface height data in global oceans

Funds: The National Key Reasearch and Development Program of China under contract No. 2016YFC1401800; the National Natural Science Foundation of China under contract No. 41576176; the National Programme on Global Change and Air-Sea Interaction; Dragon 4 Project under contract No. 32292 .
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Eddy rotational velocities. a. Distribution of mean rotational velocities U on eddy contours with 1-cm interval in Gulf Stream region from SLA field on March 27, 2015. Arrows represent the surface geostrophic velocity components calculated from SLA, gray curves represent eddy boundaries determined by the UEC method, black lines represent eddy boundaries based on the maximum rotational speed method, and red points represent eddy cores that are the local extremum. The lines with color are the eddy contours with 1-cm internal that are normalized into perfect circles (the number of contours equals the eddy amplitude); the color means the value of mean rotational velocities U (cm/s). b. Variations of mean rotational velocity on eddy contours with distance to the core on March 27, 2015 globally. Each line represents an entire eddy structure with 1-cm contour interval. The numbers of the different type eddies are labeled in the panel.

    Figure  2.  Example of fitting a multicore eddy using an anisotropic two-dimensional Gaussian kernel in the SLA field. At the bottom, the black line represents the multicore eddy boundary, black asterisks represent the eddy centers, dots with color represent the SLA gridded points within the eddy interior (the colors reflect the value of the SLA), and lines with color represent the SLA contours with 2-cm intervals. The upper two independent Gauss surfaces G1(x, y) and G2(x, y) are fitted using the SLA gridded points, and the middle composite surface is the superposition of G1(x, y) and G2(x, y) with a basal SLA B (here B = –0.3 m). The fitting eddy scales σ’ are shown in the black circles at the top, and L is the distance between the composite eddy centers.

    Figure  3.  Eddies and multicore structures detected based on SLA map of October 3, 2009. Blue and red points represent cyclonic and anticyclonic eddies, respectively; blue and red lines represent the multicore eddy boundaries. There are 124 multicore cyclones and 125 multicore anticyclones in global oceans. The green block area in the western Pacific was selected to study the evolution of multicore eddies that was shown in Fig. 4.

    Figure  4.  SLA maps of eddy evolution from September 5 to October 19, 2009. Color shading represents the value of the SLA field; arrows represent the surface geostrophic velocity components calculated from the SLA; blue and red lines represent boundaries of cyclonic and anticyclonic eddies, respectively; blue and red dots represent cyclonic and anticyclonic eddy cores, respectively; and black lines represent multicore eddies. The multicore eddy structure Am persisted for 16 d from September 20 to October 5 before merging into a single-core eddy, and the multicore eddy structure Bm persisted for 13 d during October 2–14 before splitting into two eddies.

    Figure  5.  Upper-tail cumulative histograms of lifetimes (a) and propagation distances (b) of cyclonic and anticyclonic multicore eddies over a 23-year period (January 1993 to December 2015). The lower thick and thin dashed lines represent purely cyclonic and anticyclonic multicore eddies, respectively, for which no single-core eddy was matched through hybrid tracking.

    Figure  6.  Trajectories of cyclonic (blue lines) and anticyclonic (red lines) multicore eddies (abbreviate as “meddy-trajs”) over the 23-year period (January 1993 to December 2015) for all eddies (a), eddies with net eastward displacement (b), eddies with lifetime≥15 d (c), and eddies with lifetime≥ 30 d (d). The trajectories of purely multicore eddies for all (e) and lifetime≥ 30 d (f) are also given. The numbers of multicore eddies of each polarity are labeled at the top of each panel.

    Figure  7.  Maps of the number (upper), average amplitude (middle), and average scale/radius (lower) of multicore eddies for each 1° × 1° region of the World Ocean over the 23-year period (January 1993 to December 2015). Right-hand panels show meridional profiles of the average for multicore eddies (thick lines) and global eddies (thin lines) in 1° latitude bins (equatorial region with fewer eddies is not shown).

  • [1] Abernathey R P, Marshall J. 2013. Global surface eddy diffusivities derived from satellite altimetry. Journal of Geophysical Research: Oceans, 118(2): 901–916. doi: 10.1002/jgrc.20066
    [2] Adams D K, McGillicuddy D J Jr, Zamudio L, et al. 2011. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science, 332(6029): 580–583. doi: 10.1126/science.1201066
    [3] AVISO. 2017. Statistical analysis on the mesoscale eddy trajectory atlas product. https://www.aviso.altimetry.fr/fileadmin/documents/data/products/value-added/aviso_validation_report_eddy_tracking.pdf (2017,06)
    [4] Birol F, Morrow R. 2001. Source of the baroclinic waves in the southeast Indian Ocean. Journal of Geophysical Research: Oceans, 106(C5): 9145–9160. doi: 10.1029/2000JC900044
    [5] Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    [6] Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025. doi: 10.1029/2011JC007134
    [7] Chaigneau A, Pizarro O. 2005. Eddy characteristics in the eastern South Pacific. Journal of Geophysical Research: Oceans, 110(C6): C06005
    [8] Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [9] Chelton D B, Schlax M G. 1996. Global observations of oceanic Rossby waves. Science, 272(5259): 234–238. doi: 10.1126/science.272.5259.234
    [10] Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [11] Cui Wei, Yang Jungang, Ma Yi. 2016. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22-year altimetry data. Acta Oceanologica Sinica, 35(11): 16–27. doi: 10.1007/s13131-016-0945-3
    [12] Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
    [13] Dufau C, Labroue S, Dibarboure G, et al. 2013. Reducing altimetry small-scales errors to access (sub) mesoscale dynamics. In: Proceedings of Ocean Surface Topography Science Team (OSTST) Meeting. Boulder, CO: UCAR
    [14] Dufau C, Orsztynowicz M, Dibarboure G, et al. 2016. Mesoscale resolution capability of altimetry: Present and future. Journal of Geophysical Research: Oceans, 121(7): 4910–4927. doi: doi:10.1002/2015JC010904
    [15] Feng M, Wijffels S. 2002. Intraseasonal variability in the South Equatorial current of the East Indian Ocean. Journal of Physical Oceanography, 32(1): 265–277. doi: 10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2
    [16] Flierl G R. 1981. Particle motions in large-amplitude wave fields. Geophysical & Astrophysical Fluid Dynamics, 18(1–2): 39–74
    [17] Fu L L. 2009. Pattern and velocity of propagation of the global ocean eddy variability. Journal of Geophysical Research: Oceans, 114(C11): C11017. doi: 10.1029/2009JC005349
    [18] Fu L L, Chelton D B, Le Traon P Y, et al. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14–25. doi: 10.5670/oceanog.2010.02
    [19] Gaube P. 2013. Satellite observations of the influence of mesoscale ocean eddies on near-surface temperature, phytoplankton and surface stress[dissertation]. Oregon: Oregon State University
    [20] Henson S A, Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 163–176. doi: 10.1016/j.dsr.2007.11.005
    [21] Hughes C W, Jones M S, Carnochan S. 1998. Use of transient features to identify eastward currents in the Southern Ocean. Journal of Geophysical Research: Oceans, 103(C2): 2929–2943. doi: 10.1029/97JC02442
    [22] Li Qiuyang, Sun Liang. 2015. Technical Note: watershed strategy for oceanic mesoscale eddy splitting. Ocean Science, 11(2): 269–273. doi: 10.5194/os-11-269-2015
    [23] Maltrud M E, McClean J L. 2005. An eddy resolving global 1/10° ocean simulation. Ocean Modelling, 8(1–2): 31–54. doi: 10.1016/j.ocemod.2003.12.001
    [24] Nencioli F, Dong C M, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
    [25] Overman II E A, Zabusky N J. 1982. Evolution and merger of isolated vortex structures. The Physics of Fluids, 25(8): 1297–1305. doi: 10.1063/1.863907
    [26] Palacios D M, Bograd S J. 2005. A census of Tehuantepec and Papagayo eddies in the northeastern tropical Pacific. Geophysical Research Letters, 32(23): L23606. doi: 10.1029/2005GL024324
    [27] Prants S V, Budyansky M V, Ponomarev V I, et al. 2011. Lagrangian study of transport and mixing in a mesoscale eddy street. Ocean Modelling, 38(1–2): 114–125. doi: 10.1016/j.ocemod.2011.02.008
    [28] Robinson I S. 2010. Mesoscale ocean features: eddies. In: Robinson I S, ed. Discovering the Ocean from Space. Berlin Heidelberg: Springer, 69–114
    [29] Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3): 675–687. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
    [30] Samelson R M. 1992. Fluid exchange across a meandering jet. Journal of Physical Oceanography, 22(4): 431–444. doi: 10.1175/1520-0485(1992)022<0431:FEAAMJ>2.0.CO;2
    [31] Schlax M G, Chelton D B. 2016. The “Growing Method” of eddy identification and tracking in two and three dimensions[dissertation]. Oregon: College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 2016
    [32] Thompson A F, Heywood K J, Schmidtko S, et al. 2014. Eddy transport as a key component of the Antarctic overturning circulation. Nature Geoscience, 7(12): 879–884. doi: 10.1038/ngeo2289
    [33] Trieling R R, Fuentes O V, van Heijst G J F. 2005. Interaction of two unequal corotating vortices. Physics of Fluids, 17(8): 087103. doi: 10.1063/1.1993887
    [34] Wang Zifi, Li Qiuyang, Sun Liang, et al. 2015. The most typical shape of oceanic mesoscale eddies from global satellite sea level observations. Frontiers of Earth Science, 9(2): 202–208. doi: 10.1007/s11707-014-0478-z
    [35] Willett C S, Leben R R, Lavín M F. 2006. Eddies and tropical instability waves in the eastern tropical Pacific: a review. Progress in Oceanography, 69(2–4): 218–238. doi: 10.1016/j.pocean.2006.03.010
    [36] Xu Chi, Shang Xiaodong, Huang Ruixin. 2011. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data. Ocean Dynamics, 61(4): 525–541. doi: 10.1007/s10236-011-0377-8
    [37] Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [38] Yi Jiawei, Du Y, He Z, et al. 2014. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Science, 10(1): 39–48. doi: 10.5194/os-10-39-2014
    [39] Yi Jiawei, Du Yunyan, Zhou Chenghu, et al. 2015. Automatic identification of oceanic multieddy structures from satellite altimeter datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1555–1563. doi: 10.1109/JSTARS.2015.2417876
    [40] Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
  • 加载中
图(7)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  112
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-28
  • 录用日期:  2018-11-05
  • 网络出版日期:  2020-04-21
  • 刊出日期:  2020-01-20

目录

    /

    返回文章
    返回