Mediterranean Sea level trends from long-period tide gauge time series

Haddad Mahdi Taibi Hebib

Haddad Mahdi, Taibi Hebib. Mediterranean Sea level trends from long-period tide gauge time series[J]. Acta Oceanologica Sinica, 2020, 39(1): 157-165. doi: 10.1007/s13131-020-1532-1
Citation: Haddad Mahdi, Taibi Hebib. Mediterranean Sea level trends from long-period tide gauge time series[J]. Acta Oceanologica Sinica, 2020, 39(1): 157-165. doi: 10.1007/s13131-020-1532-1

doi: 10.1007/s13131-020-1532-1

Mediterranean Sea level trends from long-period tide gauge time series

More Information
    Corresponding author: E-mail: mhaddad@cts.asal.dz, haddad_mahdi@yahoo.fr
  • http://www.psmsl.org/data/obtaining/
  • http://www.psmsl.org/data/obtaining/stations/61.php
  • http://www.psmsl.org/data/obtaining/stations/761.php
  • http://www.psmsl.org/data/obtaining/stations/353.php
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    http://www.psmsl.org/data/obtaining/
    http://www.psmsl.org/data/obtaining/stations/61.php
    http://www.psmsl.org/data/obtaining/stations/761.php
    http://www.psmsl.org/data/obtaining/stations/353.php
  • Figure  1.  Monthly mean sea level (in mm). From top to bottom and from left to right: Tarifa (Spain), Algeciras (Spain), Malaga (Spain), Marseille (France), Genova (Italy), Venezia (Punta Della Salute) (Italy), Trieste (Italy), Rovinj (Croatia), Bakar (Croatia), Split Rt Marjana (Croatia), Split-Gradska Luka (Croatia), Dubrovnik (Croatia), Alexandria (Egypt) and Ceuta (Spain).

    Figure  2.  Geographic distribution of tide gauge stations and trends in mm/a.

    Table  1.   Descriptive statistics of used tide gauge data.

    PSMSL station
    code
    StationLatitude/
    (°)
    Longitude/
    (°)
    Data rangeObs.Obs. with
    missing data
    Obs. without
    missing data
    Slope/
    mm·a–1
    Standard
    deviation/
    mm·a–1
    220/021Tarifa36.008 600–5.602 6001943–2016 880 50 8301.140.12
    220/011Algeciras36.116 669–5.433 3331943–2002 711127 5840.370.13
    220/031Malaga36.712 700–4.415 4601944–2013 840149 6910.780.14
    230/051Marseille43.278 801 5.353 8601885–20161 583 481 5351.310.05
    250/011Genova44.400 000 8.900 0001884–19971 3682971 0711.190.06
    270/054Venezia (Punta Della Salute)45.433 33312.333 3331909–20001 104 651 0392.440.10
    270/061Trieste45.647 36113.758 4721875–20161 7042301 4741.320.06
    280/006Rovinj45.083 30013.628 3001955–2014 714 3 7110.850.18
    280/011Bakar45.300 00014.533 3331930–20131 008132 8761.100.13
    280/021Split Rt Marjana43.508 33316.391 6671952–2011 716 8 708–0.01 0.18
    280/031Split–Gradska Luka43.506 70016.441 7001954–2014 730 0 7301.060.17
    280/081Dubrovnik42.658 30018.063 3001956–2014 708 7 7011.560.17
    330/071Alexandria31.216 66729.916 6671944–2006 755 33 7221.770.17
    340/001Ceuta35.892 400–5.315 8901944–2016 874 28 8460.680.09
    下载: 导出CSV

    Table  2.   Man-Kendall trend test

    PSMSL station
    code
    StationData rangeMann-Kendall
    statistic S
    Var Sp valueRisk to reject the null
    hypothesis H0 while
    it is true/%
    220/021Tarifa1943–201677 957.00063 644 155.667<0.000 1<0.01
    220/011Algeciras1943–200211 249.00022 185 786.3330.0171.69
    220/031Malaga1944–201339 630.00036 737 888.667<0.000 1<0.01
    230/051Marseille1885–2016503 942.000402 249 772.000<0.000 1<0.01
    250/011Genova1884–1997211 644.0001 366 844 12.667<0.000 1<0.01
    270/054Venezia (Punta Della Salute)1909–2000230 566.000124 801 981.333<0.000 1<0.01
    270/061Trieste1875–2016407 832.000356 190 664.667<0.000 1<0.01
    280/006Rovinj1955–201433 495.00040 018 652.333<0.000 1<0.01
    280/011Bakar1930–201380 595.00074 816 433.000<0.000 1<0.01
    280/021Split Rt Marjana1952–20117 043.00039 514 591.0000.26326.25
    280/031Split – Gradska Luka1954–201444 872.00043 310 978.000<0.000 1<0.01
    280/081Dubrovnik1956–201458 345.00038 354 886.333<0.000 1<0.01
    330/071Alexandria1944–200661 332.00041 903 860.667<0.000 1<0.01
    340/001Ceuta1944–201659 598.00067 392 980.000<0.000 1<0.01
    下载: 导出CSV

    Table  3.   Seasonal Man-Kendall trend test, period=12

    PSMSL station codeStationData rangeSeasonal Mann-Kendall
    statistic $\hat S$
    $Var\;\hat S$p valueRisk to reject the null
    hypothesis H0 while
    it is true/%
    220/021Tarifa1943–20167 423.000444 189.667<0.000 1<0.01
    220/011Algeciras1943–20021 331.000155 999.0000.001<0.08
    220/031Malaga1944–20134 036.000261 128.667<0.000 1<0.01
    230/051Marseille1885–201647 047.0002 769 162.333<0.000 1<0.01
    250/011Genova1884–199720 645.000964 047.667< 0.000 1<0.01
    270/054Venezia (Punta Della Salute)1909–200021 238.000880 667.333< 0.000 1<0.01
    270/061Trieste1875–201637 906.0002 500 688.000< 0.000 1<0.01
    280/006Rovinj1955–20143 188.000276 999.333< 0.000 1<0.01
    280/011Bakar1930–201341 832.000804 104.000< 0.000 1<0.01
    280/021Split Rt Marjana1952–20111 500.000271 295.3330.004<0.40
    280/031Split – Gradska Luka1954–20143 972.000294 894.000< 0.000 1<0.01
    280/081Dubrovnik1956–20145 667.000272 425.000<0.000 1<0.01
    330/071Alexandria1944–20067 542.000284 224.667<0.000 1<0.01
    340/001Ceuta1944–20165 955.000460 473.000<0.000 1<0.01
    下载: 导出CSV

    Table  4.   Estimated seasonal Sen’s slopes

    PSMSL station
    code
    StationData rangeSen’s slope /
    mm·a–1
    VLM/
    mm·a–1
    Tide gauge VLM
    corrected/mm·a–1
    220/021Tarifa1943–20161.25–0.271.52
    220/011Algeciras1943–20020.29–0.260.55
    220/031Malaga1944–20131.08–0.211.29
    230/051Marseille1885–20161.25–0.321.57
    250/011Genova1884–19971.23–0.161.39
    270/054Venezia (Punta Della Salute)1909–20002.41–0.032.44
    270/061Trieste1875–20161.30–0.031.33
    280/006Rovinj1955–20140.79–0.060.85
    280/011Bakar1930–20131.00–0.041.04
    280/021Split Rt Marjana1952–20110.44–0.120.56
    280/031Split–Gradska Luka1954–20140.95–0.121.07
    280/081Dubrovnik1956–20141.38–0.131.51
    330/071Alexandria1944–20061.78–0.121.90
    340/001Ceuta1944–20160.71–0.260.97
    下载: 导出CSV
  • [1] Barnett T P. 1984. The estimation of "global" sea level change: a problem of uniqueness. Journal of Geophysical Research: Oceans, 89(C5): 7980–7988. doi: 10.1029/JC089iC05p07980
    [2] Bogdanov V I, Medvedev M Y, Solodov V A, et al. 2000. Mean monthly series of sea level observations (1777–1993) at the Kronstadt gauge. Reports of the Finnish Geodetic Institute, 34
    [3] Cartwright D E. 1972a. Secular changes in the oceanic tides at Brest, 1711–1936. Geophysical Journal of the Royal Astronomic Society, 30(4): 433–449. doi: 10.1111/j.1365-246X.1972.tb05826.x
    [4] Cartwright D E. 1972b. Some ocean tide measurements of the Eighteenth century, and their relevance today. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 72(1): 331–339. doi: 10.1017/S0080455X00001892
    [5] Cazenave A, Cabanes C, Dominh K, et al. 2001. Recent sea level change in the Mediterranean Sea revealed by TOPEX/POSEIDON satellite altimetry. Geophysical Research Letters, 28(8): 1607–1610. doi: 10.1029/2000GL012628
    [6] Douglas B C. 1991. Global sea level rise. Journal of Geophysical Research: Oceans, 96(C4): 6981–6992. doi: 10.1029/91JC00064
    [7] Ekman M. 1988. The world's longest continued series of sea level observations. Pure and Applied Geophysics, 127(1): 73–77. doi: 10.1007/BF00878691
    [8] Fenoglio-Marc L. 2001. Analysis and representation of regional sea-level variability from altimetry and atmospheric-oceanic data. Geophysical Journal International, 145(1): 1–18. doi: 10.1046/j.1365-246x.2001.00284.x
    [9] Frihy O E. 1992. Sea-level rise and shoreline retreat of the Nile Delta promontories, Egypt. Natural Hazards, 5(1): 65–81. doi: 10.1007/BF00127140
    [10] Frihy O E. 2003. The Nile Delta-Alexandria Coast: vulnerability to sea-level rise, consequences and adaptation. Mitigation and Adaptation Strategies for Global Change, 8(2): 115–138. doi: 10.1023/A:1026015824714
    [11] Galassi G, Spada G. 2014. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872-2012). Annals of Geophysics, 57(6): P0658. doi: 10.4401/ag-6536
    [12] Gornitz V, Lebedeff S, Hansen J. 1982. Global sea level trend in the past century. Science, 215(4540): 1611–1614. doi: 10.1126/science.215.4540.1611
    [13] Gutenberg B. 1941. Changes in sea level, postglacial uplift, and mobility of the earth's interior. GSA Bulletin, 52(5): 721–772. doi: 10.1130/GSAB-52-721
    [14] Hannah J. 1988. Analysis of mean sea level trends in New Zealand from historical tidal data. Wellington: Dept of Survey and Land Information
    [15] Hannah J. 1990. Analysis of mean sea level data from New Zealand for the period 1899–1988. Journal of Geophysical Research: Solid Earth, 95(B8): 12399–12405. doi: 10.1029/JB095iB08p12399
    [16] Hipel K W, McLeod A I. 1994. Time Series Modelling of Water Resources and Environmental Systems. Developments in Water Science, 45. Amsterdam: Elsevier
    [17] Hirsch R M, Slack J R, Smith R A. 1982. Techniques of trend Analysis for monthly water quality data. Water Resources Research, 18(1): 107–121. doi: 10.1029/WR018i001p00107
    [18] Holgate S J. 2007. On the decadal rates of sea level change during the twentieth century. Geophysical Research Letters, 34(1): L01602. doi: 10.1029/2006GL028492
    [19] Holgate S J, Matthews A, Woodworth P L,et al. 2013. New data systems and products at the Permanent Service for Mean Sea Level. Journal of Coastal Research, 29(3): 493–504. doi: 10.2112/JCOASTRES-D-12-00175.1
    [20] Holgate S J, Woodworth P L. 2004. Evidence for enhanced coastal sea level rise during the 1990s. Geophysical Research Letters, 31(7): L07305. doi: 10.1029/2004GL019626
    [21] Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The physical science basis. http://www.climatechange2013.org [2018–07–17]
    [22] Kendall M G. 1975. Rank Correlation Methods. 4th ed. London: Charles Griffin.
    [23] Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245–259. doi: 10.2307/1907187
    [24] Marcos M, Tsimplis M N. 2008. Coastal sea level trends in Southern Europe. Geophysical Journal International, 175(1): 70–82. doi: 10.1111/j.1365-246X.2008.03892.x
    [25] Peltier W R, Argus D F, Drummond R. 2015. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1): 450–487. doi: 10.1002/2014JB011176
    [26] Peltier W R, Tushingham A M. 1991. Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change. Journal of Geophysical Research: Solid Earth, 96(B4): 6779–6796. doi: 10.1029/90JB02067
    [27] Permanent Service for Mean Sea Level ( PSMSL). 2018. Obtaining Tide gauge data. http://www.psmsl.org/data/obtaining [2018–07–17]
    [28] Pohlert T. 2016. Non-Parametric Trend tests and change-point detection. http://www.researchgate.net/publication/274014742_trend_Non-Parametric_Trend_Tests_and_Change-Point_Detection_R_package_version_001[2018–07–30]
    [29] Said M A, Moursy Z A, Radwan A A. 2012. Climate change and sea level oscillations off Alexandria, Egypt. In: Proceedings of the International Conference on Marine and Coastal Ecosystem, Mar-CoastEcs2012. Tirana, Albania, 353–359
    [30] Salmi T, Määttä A, Antilla P, et al. 2002. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates—The Excel template application MAKESENS. Helsinki, Finland: Finnish Meteorological Institute, 35
    [31] Sen P K. 1968. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379–1389. doi: 10.2307/2285891
    [32] Shaltout M, Tonbol K, Omstedt A. 2015. Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia, 57(4): 293–307. doi: 10.1016/j.oceano.2015.06.004
    [33] Tabari H, Marofi S, Ahmadi M. 2011. Long-term variations of water quality parameters in the Maroon River, Iran. Environmental Monitoring and Assessment, 177(1–4): 273–287. doi: 10.1007/s10661-010-1633-y
    [34] Trupin A, Wahr J. 1990. Spectroscopic analysis of global tide gauge sea level data. Geophysical Journal International, 100(3): 441–453. doi: 10.1111/j.1365-246X.1990.tb00697.x
    [35] Tsimplis M N, Baker T F. 2000. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? . Geophysical Research Letters, 27(12): 1731–1734. doi: 10.1029/1999GL007004
    [36] Tsimplis M N, Josey S A. 2001. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophysical Research Letters, 28(5): 803–806. doi: 10.1029/2000GL012098
    [37] Van Veen J. 1954. Tide-gauges, subsidence-gauges and flood-stones in the Netherlands. In: Geologie En Mijnbouw (New Series). Netherlands: Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap, Vol 16: 214−219
    [38] Woodworth P L. 1999a. A study of changes in high water levels and tides at Liverpool during the last two hundred and thirty years with some historical background. Proudman Oceanographic Laboratory Report, (56): 68
    [39] Woodworth P L. 1999b. High waters at Liverpool since 1768: the UK’s longest sea level record. Geophysical Research Letters, 26(11): 1589–1592. doi: 10.1029/1999GL900323
    [40] Woodworth P L. 2003. Some comments on the long sea level records from the Northern Mediterranean. Journal of Coastal Research, 19(1): 212–217
    [41] Wöppelmann G. 1997. Rattachement géodésique des marégraphes dans un système de référence mondial par techniques de géodésie spatiale [dissertation]. France: Observatoire de Paris
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  38
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 录用日期:  2018-11-30
  • 网络出版日期:  2020-04-21
  • 刊出日期:  2020-01-20

目录

    /

    返回文章
    返回