Sea-surface acoustic backscattering measurement at 6–25 kHz in the Yellow Sea

Lehua Qi Guangming Kan Baohua Liu Yanliang Pei Zhiguo Yang Shengqi Yu

Lehua Qi, Guangming Kan, Baohua Liu, Yanliang Pei, Zhiguo Yang, Shengqi Yu. Sea-surface acoustic backscattering measurement at 6–25 kHz in the Yellow Sea[J]. Acta Oceanologica Sinica, 2020, 39(3): 113-122. doi: 10.1007/s13131-020-1539-7
Citation: Lehua Qi, Guangming Kan, Baohua Liu, Yanliang Pei, Zhiguo Yang, Shengqi Yu. Sea-surface acoustic backscattering measurement at 6–25 kHz in the Yellow Sea[J]. Acta Oceanologica Sinica, 2020, 39(3): 113-122. doi: 10.1007/s13131-020-1539-7

doi: 10.1007/s13131-020-1539-7

Sea-surface acoustic backscattering measurement at 6–25 kHz in the Yellow Sea

Funds: The National Natural Science Foundation of China under contract Nos 41330965 and 41527809; the Opening Fund of Qingdao National Laboratory for Marine Science and Technology under contract No. QNLM2016ORP0209; the Taishan Scholar Project Funding under contract No. tspd20161007.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic diagram of the observation system.

    Figure  2.  Mean signal and noise levels of 90 samples at 10 kHz.

    Figure  3.  Diagram of relative positions of the observation system.

    Figure  4.  Comparisons of the measured backscattering strengths with second order perturbation theory and bubbles model at wind speeds of 3 m/s. The frequencies are 9 kHz (a), 11 kHz (b), 13 kHz (c), 15 kHz (d), 17 kHz( e),18 kHz (f), 21 kHz (g),25 kHz (h),respectively.

    Figure  5.  Comparisons of the measured backscattering strengths with second order perturbation theory and bubbles model at wind speeds of 4.5 m/s. The frequencies are 6 kHz (a), 9 kHz (b), 11 kHz (c), 15 kHz (d),17 kHz (e), 19 kHz (f), 21 kHz, (g),25 kHz (h), respectively.

    Figure  6.  Backscattering strengths at different wind speeds.

    Figure  7.  Backscattering strength at a wind speed of 4.5 m/s and in the frequency range of 6–24 kHz.

    Table  1.   Slopes of linear regression between backscattering and frequency at a wind speed of 4.5 m/s

    Garzing angle/(°)Slope/dB·kHz–1
    20 0.203 0
    24 0.142 6
    30 0.496 5
    34 0.401 9
    40 0.203 7
    50−0.050 0
    60−0.170 4
    70−0.140 4
    80−0.111 2
    下载: 导出CSV
  • [1] Bachmann W. 1973. A theoretical model for the backscattering strength of a composite-roughness sea surface. The Journal of the Acoustical Society of America, 54(3): 712–716. doi: 10.1121/1.1913652
    [2] Chapman R P, Harris J H. 1962. Surface backscattering strengths measured with explosive sound sources. The Journal of the Acoustical Society of America, 34(10): 1592–1597. doi: 10.1121/1.1909057
    [3] Chapman R P, Scott H D. 1964. Surface backscattering strengths measured over an extended range of frequencies and grazing angles. The Journal of the Acoustical Society of America, 36(9): 1735–1737. doi: 10.1121/1.1919274
    [4] Clay C S, Medwin H. 1977. Acoustical Oceanography. New York: Wiley
    [5] Crowther P A. 1980. Acoustical scattering from near-surface bubble layers. In: Lauterborn W, ed. Cavitation and Inhomogeneities in Underwater Acoustics. Berlin, Heidelberg: Springer, 194–204
    [6] Dahl P H. 2003. The contribution of bubbles to high-frequency sea surface backscatter: a 24-h time series of field measurements. The Journal of the Acoustical Society of America, 113(2): 769–780. doi: 10.1121/1.1532029
    [7] Dahl P H, Plant W J, Nützel B, et al. 1997. Simultaneous acoustic and microwave backscattering from the sea surface. The Journal of the Acoustical Society of America, 101(5): 2583–2595. doi: 10.1121/1.418500
    [8] Garrison G R, Murphy S R, Potter D S. 1960. Measurements of the backscattering of underwater sound from the sea surface. The Journal of the Acoustical Society of America, 32(1): 104–111. doi: 10.1121/1.1907860
    [9] Lilly J G, McConnell S O. 1978. Surface reverberation measurements in Daboh Bay and the open ocean. The Journal of the Acoustical Society of America, 64(S1): S164
    [10] McDaniel S T. 1993a. Sea surface reverberation: a review. The Journal of the Acoustical Society of America, 94(4): 1905–1922. doi: 10.1121/1.407514
    [11] McDaniel S T. 1993b. Sea−surface reverberation fluctuations. The Journal of the Acoustical Society of America, 94(3): 1551–1559. doi: 10.1121/1.408130
    [12] Neutzel B, Herwig H, Monti J M, et al. 1987. The Influence of Surface Roughness and Bubbles on Sea Surface Acoustic Backscattering. NUSC Tech. Rep.7955. New London: Naval Underwater Systems Center
    [13] Norton G V, Novarini J C. 2001. On the relative role of sea-surface roughness and bubble plumes in shallow-water propagation in the low-kilohertz region. The Journal of the Acoustical Society of America, 110(6): 2946–2955. doi: 10.1121/1.1414883
    [14] Ogden P M, Erskine F T. 1994a. Surface scattering measurements using broadband explosive charges in the critical sea test experiments. The Journal of the Acoustical Society of America, 95(2): 746–761. doi: 10.1121/1.408385
    [15] Ogden P M, Erskine F T. 1994b. Surface and volume scattering measurements using broadband explosive charges in the Critical Sea Test 7 experiment. The Journal of the Acoustical Society of America, 96(5): 2908–2920. doi: 10.1121/1.411300
    [16] Reeves J, Igarashi Y, Beck L, et al. 1969. Azimuthal dependence of sound backscattered from the sea surface. The Journal of the Acoustical Society of America, 46(5B): 1284–1288. doi: 10.1121/1.1911853
    [17] Sarkar K, Prosperetti A. 1994. Coherent and incoherent scattering by oceanic bubbles. The Journal of the Acoustical Society of America, 96(1): 332–341. doi: 10.1121/1.410483
    [18] Thorsos E I. 1990. Acoustic scattering from a “Pierson-Moskowitz” sea surface. The Journal of the Acoustical Society of America, 88(1): 335–349. doi: 10.1121/1.399909
    [19] Urick R J, Hoover R M. 1956. Backscattering of sound from the sea surface: Its measurement, causes, and application to the prediction of reverberation levels. The Journal of the Acoustical Society of America, 28(6): 1038–1042. doi: 10.1121/1.1908547
    [20] Van Vossen R, Ainslie M A. 2011. The effect of wind-generated bubbles on sea-surface backscattering at 940 Hz. The Journal of the Acoustical Society of America, 130(5): 3413–3420. doi: 10.1121/1.3626125
    [21] Wildt R. editor. 1946. Physics of Sound in the Sea, N D R C. Summary Tech Rep Div. 6, Vol. 8. Washington, DC: US Government Printing Office
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  485
  • HTML全文浏览量:  78
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 录用日期:  2019-09-02
  • 网络出版日期:  2020-04-21
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回