Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR

Weihua Ai Mengyan Feng Guanyu Chen Wen Lu

Weihua Ai, Mengyan Feng, Guanyu Chen, Wen Lu. Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR[J]. Acta Oceanologica Sinica, 2020, 39(5): 115-122. doi: 10.1007/s13131-020-1540-1
Citation: Weihua Ai, Mengyan Feng, Guanyu Chen, Wen Lu. Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR[J]. Acta Oceanologica Sinica, 2020, 39(5): 115-122. doi: 10.1007/s13131-020-1540-1

doi: 10.1007/s13131-020-1540-1

Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR

Funds: The National Natural Science Foundation of China under contract Nos 41475019, 41575028, 41705007, 41605016, and 41505016.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Diagram of the iterative process to retrieve sea surface temperature.

    Figure  2.  The variation of RMS error of retrieved sea surface temperature with the forward model, for various levels of noise. a. Approximately 0.25 K, b. approximately 0.50 K, and c. approximately 0.75 K on TB, with the incidence angle under five homogeneous scenes (Table 2).

    Figure  3.  The RMS error of retrieved sea surface temperature at different incidence angles over the five homogeneous scenes under nominal retrieval conditions (Table 4).

    Figure  4.  The RMS error on retrieved sea surface temperature at different incidence angles over the high TS scene (a, b), the low TS scene (c, d), the high W scene (e, f), and the low W scene (g, h), under different retrieval conditions.

    Figure  5.  The RMS error on retrieved sea surface temperature at different incidence angles and wind speed over the high TS scene (a), and the low TS scene (b) under nominal retrieval conditions (Table 4).

    Table  1.   Parameters of the one-dimensional synthetic aperture radiometer, 1D-SAMR

    ParametersValues
    Frequency6.9 GHz
    Bandwidth200 MHz
    Polarization modesvertical and horizontal polarization
    Integral time0.5 s
    Number of antenna elements55
    Minimum spacing of antenna elements$0.73 {\lambda _0}$
    Angle range of field of view–43° to 43°
    Angle resolution0.43°
    Size of parabolic cylindrical antenna12 m × 10 m
    Spatial resolution along the swath5 km
    下载: 导出CSV

    Table  2.   Geophysical parameter values for the five homogeneous scenes used in the retrievals

    SceneSTS/KW/m·s–1$\varphi $/(°)V/mmL/mm
    Reference352931045300.1
    High TS353031045300.1
    Low TS352831045300.1
    High W352931545300.1
    Low W35293 745300.1
    下载: 导出CSV

    Table  3.   The RMS error of retrieved sea surface temperature at different incidence angles under different calibration accuracies

    Scene Calibration accuracy θEIA = 35° θEIA = 40° θEIA = 45° θEIA = 50° θEIA = 55° θEIA = 60° θEIA = 65°
    Reference 0.25 K 0.309 5 K 0.303 6 K 0.295 3 K 0.283 9 K 0.269 0 K 0.250 2 K 0.228 0 K
    0.50 K 0.618 5 K 0.606 8 K 0.590 1 K 0.567 3 K 0.537 5 K 0.500 2 K 0.455 6 K
    0.75 K 0.926 5 K 0.909 0 K 0.884 0 K 0.849 9 K 0.805 3 K 0.749 4 K 0.682 8 K
    High TS 0.25 K 0.286 5 K 0.281 4 K 0.274 2 K 0.264 3 K 0.251 4 K 0.235 1 K 0.215 7 K
    0.50 K 0.572 9 K 0.562 8 K 0.548 3 K 0.528 5 K 0.502 7 K 0.470 2 K 0.431 4 K
    0.75 K 0.859 3 K 0.844 0 K 0.822 3 K 0.792 6 K 0.753 8 K 0.705 1 K 0.647 0 K
    Low TS 0.25 K 0.355 8 K 0.348 1 K 0.337 1 K 0.322 1 K 0.302 5 K 0.278 2 K 0.249 3 K
    0.50 K 0.710 6 K 0.695 3 K 0.673 3 K 0.643 4 K 0.604 4 K 0.555 8 K 0.498 2 K
    0.75 K 1.063 7 K 1.040 8 K 1.008 0 K 0.963 2 K 0.905 0 K 0.832 4 K 0.746 3 K
    High W 0.25 K 0.297 9 K 0.292 7 K 0.285 4 K 0.275 4 K 0.262 2 K 0.245 5 K 0.225 2 K
    0.50 K 0.595 3 K 0.584 9 K 0.570 3 K 0.550 3 K 0.524 1 K 0.490 8 K 0.450 1 K
    0.75 K 0.891 8 K 0.876 3 K 0.854 4 K 0.824 5 K 0.785 3 K 0.735 4 K 0.674 6 K
    Low W 0.25 K 0.314 1 K 0.308 0 K 0.299 1 K 0.287 1 K 0.271 4 K 0.251 8 K 0.228 7 K
    0.50 K 0.627 7 K 0.615 4 K 0.597 8 K 0.573 7 K 0.542 4 K 0.503 3 K 0.457 1 K
    0.75 K 0.940 2 K 0.921 8 K 0.895 5 K 0.859 5 K 0.812 5 K 0.754 1 K 0.685 0 K
    下载: 导出CSV

    Table  4.   Retrieval conditions tested over the five homogeneous scenes

    Retrieval conditionsPrior values PiUncertainties ${\sigma _{{P_i}}}$Noise on auxiliary parameters
    Nominal${P_{ {T_{\rm S}} } } = $286.7 K${\sigma _{ {T_{\rm S}} } } = $11.9 K${\sigma _W} =$0.5 m·s–1, ${\sigma_{\varphi}} = $20°, ${\sigma_V} =$0.5 mm, ${\sigma_L} = $0.01 mm
    $W$ perfectly/poorly knownnominalnominal${\sigma _W} = $0 m·s–1/1.0 m·s–1 all other $\sigma $: nominal
    $\varphi $ perfectly/poorly knownnominalnominal${\sigma_{\varphi}} =$0°/40°, all other $\sigma $: nominal
    $V$ perfectly/poorly knownnominalnominal${\sigma_V} =$0 mm/1.0 mm, all other $\sigma $: nominal
    $L$ perfectly/poorly knownnominalnominal${\sigma _L} =$0 mm/0.02 mm, all other $\sigma $: nominal
    下载: 导出CSV

    Table  5.   The RMS errors of sea surface temperature retrieval for the reference scene specified in Table 2 under the retrieval configurations (Table 4)

    Retrieval conditionsθEIA = 35° θEIA = 40° θEIA = 45° θEIA = 50° θEIA = 55° θEIA = 60° θEIA = 65°
    Nominal1.029 5 K1.015 2 K0.989 1 K0.940 9 K0.867 3 K0.771 8 K0.666 6 K
    σW0 m/s0.630 6 K0.620 8 K0.606 3 K0.585 6 K0.558 0 K0.523 7 K0.484 6 K
    1.0 m/s1.740 0 K1.716 6 K1.669 2 K1.577 0 K1.431 2 K1.239 7 K1.025 9 K
    σφ1.029 8 K1.015 6 K0.989 6 K0.941 6 K0.868 3 K0.772 6 K0.665 3 K
    40°1.030 4 K1.018 1 K0.995 0 K0.951 1 K0.882 8 K0.794 1 K0.696 8 K
    σV0 mm1.029 5 K1.015 2 K0.989 1 K0.940 8 K0.867 1 K0.771 5 K0.666 1 K
    1.0 mm1.030 3 K1.016 2 K0.990 2 K0.942 2 K0.868 9 K0.773 9 K0.669 1 K
    σL0 mm1.022 5 K1.007 5 K0.980 4 K0.930 9 K0.855 5 K0.757 9 K0.650 1 K
    0.02 mm1.050 7 K1.038 7 K1.015 5 K0.971 1 K0.902 6 K0.813 4 K0.715 2 K
    下载: 导出CSV
  • [1] Chelton D B, Wentz F J. 2005. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bulletin of the American Meteorological Society, 86(8): 1097–1116. doi: 10.1175/BAMS-86-8-1097
    [2] Corbella I, Duffo N, Vall-Llossera M, et al. 2004. The visibility function in interferometric aperture synthesis radiometry. IEEE Transactions on Geoscience & Remote Sensing, 42(8): 1677–1682
    [3] Curry J A, Bentamy A, Bourassa M A, et al. 2004. Seaflux. Bulletin of the American Meteorological Society, 85(3): 409–424. doi: 10.1175/BAMS-85-3-409
    [4] Font J, Camps A, Borges A, et al. 2010. SMOS: The challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98(5): 649–665. doi: 10.1109/JPROC.2009.2033096
    [5] Guan L, Kawamura H. 2003. SST availabilities of satellite infrared and microwave measurements. Journal of Oceanography, 59(2): 201–209. doi: 10.1023/A:1025543305658
    [6] Kerr Y H, Waldteufel P, Wigneron J P, et al. 2001. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience & Remote Sensing, 39(8): 1729–1735
    [7] Le Vine D M. 1990. The sensitivity of synthetic aperture radiometers for remote sensing applications from space. Radio Science, 25(4): 441–453. doi: 10.1029/RS025i004p00441
    [8] Le Vine D M, Griffis A J, Swift C T, et al. 1994. ESTAR: a synthetic aperture microwave radiometer for remote sensing applications. Proceedings of the IEEE, 82(12): 1787–1801. doi: 10.1109/5.338071
    [9] Le Vine D M, Kao M, Swift C T, et al. 1990. Initial results in the development of a synthetic aperture microwave radiometer. IEEE Transactions on Geoscience & Remote Sensing, 28(4): 614–619
    [10] Le Vine D M, Swift C T, Haken M. 2001. Development of the synthetic aperture microwave radiometer, ESTAR. IEEE Transactions on Geoscience & Remote Sensing, 39(1): 199–202
    [11] Liebe H J, Rosenkranz P W, Hufford G A. 1992. Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. Journal of Quantitative Spectroscopy & Radiative Transfer, 48(5–6): 629–643
    [12] Lim B H. 2009. The design and development of a geostationary synthetic thinned aperture radiometer [dissertation]. Michigan: The University of Michigan
    [13] Mätzler C. 2006. Thermal Microwave Radiation: Applications for Remote Sensing. London: Institution of Engineering & Technology
    [14] Meissner T, Wentz F J. 2004. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Transactions on Geoscience & Remote Sensing, 42(9): 1836–1849
    [15] Meissner T, Wentz F J. 2012. The Emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience & Remote Sensing, 50(8): 3004–3026
    [16] Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13): 1609–1625. doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
    [17] Rosenkranz P W. 1999. Correction [to “Water vapor microwave continuum absorption: A comparison of measurements and models” by Philip W. Rosenkranz]. Radio Science, 34(4): 1025
    [18] Ruf C S, Swift C T, Tanner A B, et al. 1988. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth. IEEE Transactions on Geoscience & Remote Sensing, 26(5): 597–611
    [19] Schanda E. 1979. Multiple wavelength aperture synthesis for passive sensing of the earth’s surface. In: Antennas and Propagation Society International Symposium. Seattle, WA, USA: IEEE, 762–763
    [20] Schwartz M J. 1998. Observation and modeling of atmospheric oxygen millimeter-wave transmittance [dissertation]. Cambridge, MA: Massachusetts Institute of Technology
    [21] Ulaby F T, Moore R K, Fung A K. 1981. Microwave Remote Sensing: Active and Passive. Volume 1: Microwave Remote Sensing Fundamentals and Radiometry. Reading, MA, USA: Addison-Wesley
    [22] Wentz F J, Meissner T. 2000. Algorithm theoretical basis document (ATBD). Version 2: AMSR ocean algorithm. Santa Rosa, CA: Remote Sensing Systems
    [23] Wentz F J, Meissner T. 2016. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations. Radio Science, 51(5): 381–391. doi: 10.1002/2015RS005858
    [24] Zine S, Boutin J, Font J, et al. 2008. Overview of the SMOS sea surface salinity prototype processor. IEEE Transactions on Geoscience & Remote Sensing, 46(3): 621–645
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  49
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 录用日期:  2019-05-17
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回