Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region

Ya’nan Ding Chunsheng Jing

Ya’nan Ding, Chunsheng Jing. Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2020, 39(3): 25-35. doi: 10.1007/s13131-020-1559-3
Citation: Ya’nan Ding, Chunsheng Jing. Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2020, 39(3): 25-35. doi: 10.1007/s13131-020-1559-3

doi: 10.1007/s13131-020-1559-3

Three-dimensional thermohaline anomaly structures of rings in the Kuroshio Extension region

Funds: The National Key Research and Development Program of China under contract No. 2016YFC1402607; Scientific Research Foundation of Third Institude of Oceanography, Ministry of Nature Resources under contract Nos 2017012 and 2018001; Global Change and Air-Sea Interaction Program under contract Nos GASI-IPOVAI-02 and GASI-IPOVAI-03.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  An example of a cyclonic ring shed from the Kuroshio Extension (KE) jet at (31.0°N, 154.5°E). a–f. The temporal evolution of this cyclonic ring from 16 September 2005 to 23 January 2006, respectively. Color indicates absolute dynamic topography (cm), and black contour the path of the KE axis and the pinched-off ring.

    Figure  2.  Floats distribution and main water masses in the study regions. a. The spatial distribution of floats available in the KE region, with the number of floats shown in 1°×1° bin in the period 1999–2015; b. The mean potential temperature-salinity diagrams; and c. the mean potential vorticity (PV) diagrams for sub-regions B to E, calculated with all float profiles outside the eddies. NPTW: North Pacific Tropical Water; L-CMW: Lighter Center Mode Water; NPIW: North Pacific Intermediate Water; and STMW: Subtropical Mode Water.

    Figure  3.  The mean vertical profiles of potential temperature anomaly $\theta '$ (°C) for the anticyclonic and cyclonic rings in the three sub-regions. The blue and red curves in each diagram represent the anomaly for the cyclonic and anticyclonic rings, respectively. The shading indicates one standard deviation.

    Figure  4.  Vertical sections of potential temperature anomaly (θ´) of composite cyclonic (top) and anticyclonic (bottom) rings at ${\rm{\Delta }}y = 0$ in sub-regions B, C, and D.

    Figure  5.  Mean vertical profiles of potential temperature based on the profiles outside eddies. The frame in red indicates the depth of the main thermocline.

    Figure  6.  Horizontal distributions of potential temperature anomaly ($\theta '$) of the composite cyclonic rings (the left three columns) and anticyclonic rings (the right three columns) at depths of 10, 150, 300, 450, 600, 900, and 1 200 m in sub-regions B, C, and D, respectively.

    Figure  7.  Mean vertical profiles of salinity anomaly (S') for anticyclonic and cyclonic rings in all sub-regions. The blue and red curves represent the anomaly for the cyclonic and anticyclonic rings, respectively. Shading indicates one standard deviation.

    Figure  8.  Vertical sections of salinity anomaly (S′) of the composite cyclonic rings (top) and the anticyclonic rings (bottom) at ${\rm{\Delta }}y = 0$ in sub-regions B, C, and D.

    Figure  9.  Horizontal distributions of salinity anomaly ($S '$) of composited cyclonic rings (the three left columns) and anticyclonic rings (the three right columns) at depths of 10, 150, 300, 450, 600, 900, and 1 200 m in sub-regions B, C, and D.

    Table  1.   Statistics of the rings shed from the KE jet from 1993 to 2015

    NumberAmplitude/cmLifetime/dradius/km
    allreabsorbed
    Region B1608734.9/37.652/6096.7/82.5
    Region C169113 33.9/37.343/69103.9/92.4
    Region D1398728.5/34.042/43109.1/102.4
    Region E 493525.3/29.746/37116.0/109.5
    Note: The data separated by a slash are those of the anticyclonic/cyclonic rings.
    下载: 导出CSV

    Table  2.   The floats caught by rings and inside the range of twofold radius of rings in each sub-region

    NumberFloats caught by ringsInside the range of twofold radius of ringsOutside rings
    Region B30 182173/140704/79913 714
    Region C19 615156/206950/75910 058
    Region D13 318 61/104509/297 6 457
    Region E 8 29917/2577/108 4 598
    Note: The values separated by a slash are those of the anticyclonic rings/cyclonic rings.
    下载: 导出CSV
  • [1] Akima H. 1970. A new method of interpolation and smooth curve fitting based on local procedures. Journal of the ACM, 17(4): 589–602. doi: 10.1145/321607.321609
    [2] Barth A, Beckers J M, Troupin C, et al. 2014. Divand-1.0: n-dimensional variational data analysis for ocean observations. Geoscientific Model Development, 7(1): 225–241. doi: 10.5194/gmd-7-225-2014
    [3] Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    [4] Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025. doi: 10.1029/2011JC007134
    [5] Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606. doi: 10.1029/2007GL030812
    [6] Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [7] Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research: Oceans, 117(C5): C05021. doi: 10.1029/2011JC007724
    [8] Cushman-Roisin B. 1993. Trajectories in Gulf Stream meander. Journal of Geophysical Research: Oceans, 98(C2): 2543–2554. doi: 10.1029/92JC02059
    [9] Ding Ya’nan, Jing Chunsheng, Qiu Yun. 2019. Temporal and spatial characteristics of pinch-off rings in the Kuroshio Extension region. Haiyang Xuebao (in Chinese), 41(5): 47–58. doi: 10.3969/j.issn.0253-4193.2019.05.005
    [10] Dong Di, Brandt P, Chang Ping, et al. 2017. Mesoscale eddies in the Northwestern Pacific Ocean: three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813. doi: 10.1002/2017JC013303
    [11] Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2: 150028. doi: 10.1038/sdata.2015.28
    [12] Itoh S, Yasuda I. 2010. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension Region detected from the distribution of the sea surface height anomaly. Journal of Physical Oceanography, 40(5): 1018–1034. doi: 10.1175/2009JPO4265.1
    [13] Japan Agency for Marine-Earth Science and Technology. 2016. Data and Sample Research System for Whole Cruise Information in JAMSTEC (DARWIN). http://www.godac.jamstec.go.jp/darwin/ [2018-09-17]
    [14] Jochumsen K, Rhein M, Hüttl‐Kabus S, et al. 2010. On the propagation and decay of North Brazil Current rings. Journal of Geophysical Research: Oceans, 115(C10): C10004. doi: 10.1029/2009JC006042
    [15] Kouketsu S, Tomita H, Oka E, et al. 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. Journal of Oceanography, 68(1): 63–77. doi: 10.1007/s10872-011-0049-9
    [16] Martin A P, Richards K J. 2001. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Research, Part II: Topical Studies in Oceanography, 48(4–5): 757–773. doi: 10.1016/S0967-0645(00)00096-5
    [17] Masuzawa J. 1969. Subtropical mode water. Deep Sea Research and Oceanographic Abstracts, 16(5): 463–472. doi: 10.1016/0011-7471(69)90034-5
    [18] McGillicuddy D J Jr, Anderson L A, Bates N R, et al. 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316(5872): 1021–1026. doi: 10.1126/science.1136256
    [19] Mcwilliams J C, Flierl G R. 1979. On the evolution of isolated, nonlinear vortices. Journal of Physical Oceanography, 9(9): 1155–1182
    [20] Olson D B. 1991. Rings in the ocean. Annual Review of Earth and Planetary Sciences, 19(1): 283–311. doi: 10.1146/annurev.ea.19.050191.001435
    [21] Qiu Bo. 2000. Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. Journal of Physical Oceanography, 30(6): 1486–1502. doi: 10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2
    [22] Qiu Bo. 2003. Kuroshio extension variability and forcing of the pacific decadal oscillations: responses and potential feedback. Journal of Physical Oceanography, 33(12): 2465–2482. doi: 10.1175/2459.1
    [23] Qiu Bo, Chen Shuiming. 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. Journal of Physical Oceanography, 35(4): 458–473. doi: 10.1175/JPO2696.1
    [24] Qiu Bo, Chen Shuiming. 2010a. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1): 213–225. doi: 10.1175/2009JPO4285.1
    [25] Qiu Bo, Chen Shuiming. 2010b. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57(13–14): 1098–1110. doi: 10.1016/j.dsr2.2008.11.036
    [26] Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the north pacific: a key to interannual/decadal climate variability. Journal of Physical Oceanography, 13(3): 675–688. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
    [27] Rudnick D L, Jan S, Centurioni L, et al. 2011. Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24(4): 52–63. doi: 10.5670/oceanog.2011.94
    [28] Sasaki Y N, Minobe S. 2015. Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. Journal of Oceanography, 71(5): 499–509. doi: 10.1007/s10872-014-0270-4
    [29] Souza J M A C, De Boyer Montégut C, Cabanes C, et al. 2015. Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data. Geophysical Research Letters, 38(21): L21602
    [30] Suga T, Hanawa K, Toba Y. 2010. Subtropical mode water in the 137°E section. Journal of Physical Oceanography, 19(10): 1605–1619
    [31] Suga T, Kato A, Hanawa K. 2000. North Pacific Tropical Water: its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, 47(2–4): 223–256. doi: 10.1016/S0079-6611(00)00037-9
    [32] Talley L D. 1993. Distribution and formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3): 517–537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
    [33] Waterman S, Hoskins B J. 2013. Eddy Shape, orientation, propagation, and mean flow feedback in Western Boundary Current jets. Journal of Physical Oceanography, 43(8): 1666–1690. doi: 10.1175/JPO-D-12-0152.1
    [34] Yang Guang. 2013. A study on the mesoscale eddies in the Northwestern Pacific Ocean (in Chinese) [dissertation]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences
    [35] Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [36] Zhang Ronghua, Rothstein L M, Busalacchi A J. 1998. Origin of upper-ocean warming and El Nino change on decadal scales in the tropical Pacific Ocean. Nature, 39(6670): 879–883
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  82
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-23
  • 录用日期:  2019-05-13
  • 网络出版日期:  2020-04-21
  • 刊出日期:  2020-03-25

目录

    /

    返回文章
    返回