Numerical investigation of solitary wave run-up attenuation by patchy vegetation

Chuyan Zhao Yan Zhang Jun Tang Yongming Shen

Chuyan Zhao, Yan Zhang, Jun Tang, Yongming Shen. Numerical investigation of solitary wave run-up attenuation by patchy vegetation[J]. Acta Oceanologica Sinica, 2020, 39(5): 105-114. doi: 10.1007/s13131-020-1572-6
Citation: Chuyan Zhao, Yan Zhang, Jun Tang, Yongming Shen. Numerical investigation of solitary wave run-up attenuation by patchy vegetation[J]. Acta Oceanologica Sinica, 2020, 39(5): 105-114. doi: 10.1007/s13131-020-1572-6

doi: 10.1007/s13131-020-1572-6

Numerical investigation of solitary wave run-up attenuation by patchy vegetation

Funds: The National Natural Science Foundation of China under contract Nos 51579036 and 51779039; the Fundamental Research Funds for the Central Universities of China under contract No. DUT19LAB13.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Wave basin and locations of the three-cylinder configurations.

    Figure  2.  Distribution of the three different cylinders in experiments conducted by Maza et al. (2016). a. C1 consisted of 880 cylinders disposed in a single circular shape with a diameter of 3 m, b. C2 was composed of 8 circular cylindrical patches with a diameter of 1 m each. Each patch was made of 112 cylinders, leading to the total number of cylinders being 896, c. C3 was formed by the four inner patches of the second configuration.

    Figure  3.  Comparison between the relative surface of numerical results and laboratory data obtained by Maza et al. (2016) for solitary wave propagation with patchy vegetation for C2.

    Figure  4.  Experimental setup of Yao et al. (2015). a. Model configuration of vegetation stems and b. sectional view of experimental basin.

    Figure  5.  Free surface simulation for case A. Comparison of free surface at gauge S1 (a), gauge S2 (b) and gauge S3 (c).

    Figure  6.  Setup for the numerical experiment.

    Figure  7.  Six distributions for the vegetation patch.

    Figure  8.  Comparison of solitary wave run-up at vegetation area (y=0.3 m) for different cases.

    Figure  9.  Comparison of solitary wave run-up at channel (y=2.85 m) for different cases.

    Table  1.   The arrangement of patchy vegetation cases

    CaseThe number of cylindersDensity /m2Volume portion $(\phi) $
    A. Non-vegetation 0 00
    B. Low density 6003000.023 6
    C. Medium density1 6008000.062 8
    D. High density3 2001 600 0.126 0
    E. High-low density1 6008000.094 0–0.031 4
    F. Low-high density1 6008000.031 4–0.094 0
    下载: 导出CSV

    Table  2.   Wave gauges location

    WG1WG2WG3WG4WG5WG6
    x/m19.0019.0019.6019.6019.0019.00
    y/m 1.00 2.50 1.00 2.50 0.30 2.85
    下载: 导出CSV

    Table  3.   The wave run-up locations and heights at y =0.3 m

    CaseRun-up location (x/m)Run-up height (y/m)
    A20.460.050
    B19.880.036
    C19.600.029
    D19.400.024
    E19.690.031
    F19.790.034
    下载: 导出CSV

    Table  4.   The wave run-up locations and heights at y =2.85 m

    CaseRun-up location (x/m)Run-up height (y/m)
    A20.460.050
    B20.460.050
    C20.460.050
    D20.510.052
    E20.460.050
    F20.460.050
    下载: 导出CSV
  • [1] Duarte C M, Losada I J, Hendriks I E, et al. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3(11): 961–968. doi: 10.1038/nclimate1970
    [2] Fonseca M S, Koehl M A R. 2006. Flow in seagrass canopies: The influence of patch width. Estuarine, Coastal and Shelf Science, 67(1–2): 1–9. doi: 10.1016/j.ecss.2005.09.018
    [3] Hansen J B, Svendsen I A. 1979. Regular waves in shoaling water: Experimental data. Series Paper 21, ISVA. Denmark: Technical University of Denmark
    [4] Irish J L, Weiss R, Yang Yongqian, et al. 2014. Laboratory experiments of tsunami run-up and withdrawal in patchy coastal forest on a steep beach. Natural Hazards, 74(3): 1933–1949. doi: 10.1007/s11069-014-1286-1
    [5] Irtem E, Gedik N, Kabdasli M S, et al. 2009. Coastal forest effects on tsunami run-up heights. Ocean Engineering, 36(3–4): 313–320. doi: 10.1016/j.oceaneng.2008.11.007
    [6] Kim D H, Lynett P J, Socolofsky S A. 2009. A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27(3–4): 198–214. doi: 10.1016/j.ocemod.2009.01.005
    [7] Kobayashi N, Karjadi E A, Johnson B D. 1997. Dispersion effects on longshore currents in surf zones. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123(5): 240–248. doi: 10.1061/(ASCE)0733-950X(1997)123:5(240)
    [8] Liu Zhongbo, Fang Kezhao. 2016. A new two-layer Boussinesq model for coastal waves from deep to shallow water: Derivation and analysis. Wave Motion, 67: 1–14. doi: 10.1016/j.wavemoti.2016.07.002
    [9] Liu Zhongbo, Fang Kezhao. 2019. Numerical verification of a two-layer Boussinesq-type model for surface gravity wave evolution. Wave Motion, 85: 98–113. doi: 10.1016/j.wavemoti.2018.11.007
    [10] Liu Zhongbo, Fang Kezhao, Cheng Y Z. 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. Journal of Fluid Mechanics, 842: 323–353. doi: 10.1017/jfm.2018.99
    [11] Lynett P J, Wu T R, Liu P L F. 2002. Modeling wave runup with depth-integrated equations. Coastal Engineering, 46(2): 89–107. doi: 10.1016/S0378-3839(02)00043-1
    [12] Maza M, Lara J L, Losada I J. 2016. Solitary wave attenuation by vegetation patches. Advances in Water Resources, 98: 159–172. doi: 10.1016/j.advwatres.2016.10.021
    [13] Mori N, Takahashi T, Yasuda T, et al. 2011. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical research letters, 38(7): L00G14
    [14] Stone B M, Shen H T. 2002. Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128(5): 500–506. doi: 10.1061/(ASCE)0733-9429(2002)128:5(500)
    [15] Tanaka N. 2009. Vegetation bioshields for tsunami mitigation: Review of effectiveness, limitations, construction, and sustainable management. Landscape and Ecological Engineering, 5(1): 71–79. doi: 10.1007/s11355-008-0058-z
    [16] Tang Jun, Causon D, Mingham C, et al. 2013. Numerical study of vegetation damping effects on solitary wave run-up using the nonlinear shallow water equations. Coastal Engineering, 75: 21–28. doi: 10.1016/j.coastaleng.2013.01.002
    [17] Tang Jun, Shen Yongming, Causon D M, et al. 2017. Numerical study of periodic long wave run-up on a rigid vegetation sloping beach. Coastal Engineering, 121: 158–166. doi: 10.1016/j.coastaleng.2016.12.004
    [18] Temmerman S, Meire P, Bouma T J, et al. 2013. Ecosystem-based coastal defence in the face of global change. Nature, 504(7478): 79–83. doi: 10.1038/nature12859
    [19] Thuy N B, Nandasena N A K, Dang V H, et al. 2018. Simplified formulae for designing coastal forest against tsunami run-up: one-dimensional approach. Natural Hazards, 92(1): 327–346. doi: 10.1007/s11069-018-3197-z
    [20] Tsai C P, Chen Y C, Sihombing T O, et al. 2017. Simulations of moving effect of coastal vegetation on tsunami damping. Natural Hazards and Earth System Sciences, 17(5): 693–702. doi: 10.5194/nhess-17-693-2017
    [21] Vandenbruwaene W, Temmerman S, Bouma T J, et al. 2011. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. Journal of Geophysical Research: Earth Surface, 116(F1): F01008
    [22] Yang Yongqian, Irish J L, Weiss R. 2017. Impact of patchy vegetation on tsunami dynamics. Journal of Waterway, Port, Coastal, and Ocean Engineering, 143(4): 04017005. doi: 10.1061/(ASCE)WW.1943-5460.0000380
    [23] Yang Zhiyong, Tang Jun, Shen Yongming. 2018. Numerical study for vegetation effects on coastal wave propagation by using nonlinear Boussinesq model. Applied Ocean Research, 70: 32–40. doi: 10.1016/j.apor.2017.09.001
    [24] Yao Yu, Du Ruichao, Jiang Changbo, et al. 2015. Experimental study of reduction of solitary wave run-up by emergent rigid vegetation on a beach. Journal of Earthquake and Tsunami, 9(5): 1540003. doi: 10.1142/S1793431115400035
    [25] Yao Yu, Tang Zhengjiang, Jiang Changbo, et al. 2018. Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach. Journal of Hydro-environment Research, 19: 78–87. doi: 10.1016/j.jher.2018.03.001
    [26] Zainali A, Marivela R, Weiss R, et al. 2018. Numerical simulation of nonlinear long waves in the presence of discontinuous coastal vegetation. Marine Geology, 396: 142–149. doi: 10.1016/j.margeo.2017.08.001
    [27] Zhang Mingliang, Li C W, Shen Yongming. 2010. A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation. Applied Mathematical Modelling, 34(4): 1021–1031. doi: 10.1016/j.apm.2009.07.010
    [28] Zhang Mingliang, Li C W, Shen Yongming. 2013. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation. Applied Mathematical Modelling, 37(1–2): 540–553. doi: 10.1016/j.apm.2012.02.049
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  97
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 录用日期:  2019-06-11
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回