Dietary separation between co-occurring copepods in a food-limited tropical coral reef of the Sanya Bay

Simin Hu Tao Li Sheng Liu Hui Huang

Simin Hu, Tao Li, Sheng Liu, Hui Huang. Dietary separation between co-occurring copepods in a food-limited tropical coral reef of the Sanya Bay[J]. Acta Oceanologica Sinica, 2020, 39(4): 65-72. doi: 10.1007/s13131-020-1583-3
Citation: Simin Hu, Tao Li, Sheng Liu, Hui Huang. Dietary separation between co-occurring copepods in a food-limited tropical coral reef of the Sanya Bay[J]. Acta Oceanologica Sinica, 2020, 39(4): 65-72. doi: 10.1007/s13131-020-1583-3

doi: 10.1007/s13131-020-1583-3

Dietary separation between co-occurring copepods in a food-limited tropical coral reef of the Sanya Bay

Funds: The Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XDA13020102; the National Key Research and Development Program of China under contract No. 2016YFC0502800; the National Natural Science Foundation of China under contract No. 41806188; the Science and Technology Planning Project of Guangdong Province, China under contract No. 2017B030314052.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sampling location (SY-C) in coral waters near Luhuitou of the Sanya Bay.

    Figure  2.  18S rDNA phylogram for different copepod species from different sampling time in the Sanya Bay. Neighbour-Joining (NJ) phylogenetic tree was shown here and only representative clones from each major lineage were included in the tree. Different colors denote different sampling time and different symbols denote different copepods. Canle-n represents Calanopia elliptica from night, Temtu-m Temora turbinate from morning, Neote-m Neocalanus tenuicornis from morning, Acane-md Acartia negligens from midday, Acrgi-md Acrocalanus gibber from midday, Subsu-m Subeucalanus subcrassus from morning, Subsu-md S. subcrassus from midday, and Subsu-n S. subcrassus from night.

    Figure  3.  Bipartite networks depicting the main dietary specialization and overlaps of different copepod samples. Bars on the top line represent different copepod sampled from different time (Canle-n represents Calanopia elliptica from night, Temtu-m Temora turbinate from morning, Neote-m Neocalanus tenuicornis from morning, Acane-md Acartia negligens from midday, Acrgi-md Acrocalanus gibber from midday, Subsu-m Subeucalanus subcrassus from morning, Subsu-md S. subcrassus from midday, and Subsu-n S. subcrassus from night). Bars on the bottom line represent different food items on species level (shortening the names with the first three letters of the genus name and first two letters of the species names), and the width of bars denote the relative percentage of each food items. A line connecting the bars between copepod and food species represents an intaking event.

    Table  1.   Phytoplankton community of ambient water from different times

    Species
    number
    Percentage
    /%
    Density/103
    cells·L–1
    Percentage
    /%
    Morning
    Diatom1368.47.274.2
    Dinoflagellate 526.32.222.6
    Others 1 5.30.3 3.2
    Sum19100 9.7100
    Midday
    Diatom1785 24.3 95.9
    Dinoflagellate 315 1.0 4.1
    Others
    Sum20100 25.4 100
    Night
    Diatom1785 38.6 52.6
    Dinoflagellate 210 0.6 0.9
    Others 15 34.1 46.5
    Sum20100 73.3 100
    Note: Others include Cyanobacteria (mostly) and Chrysophyta.
    下载: 导出CSV

    Table  2.   Diversity indices of prey organisms in the eight copepod samples analyzed

    Sample IDTaxa_SIndividualsSimpson_1-DShannon_HChao-1
    Subsu-m2150.124 40.244 92
    Subsu-md6230.544 41.166 7.5
    Subsu-n3120.291 70.566 14
    Temtu-m1150 0 1
    Neote-m2220.0867 80.184 92
    Acrne-md3200.6251.043
    Acrgi-md3170.214 50.443 84
    Calel-n10 270.776 41.867 12.5
    Note: Subsu represents Subeucalanus subcrassus, Temtu Temora turbinate, Neote Neocalanus tenuicornis, Acrne Acartia negligens, Acrgi Acrocalanus gibber, Calel Calanopia elliptica, m morning, md midday, and n night.
    下载: 导出CSV

    Table  3.   Diet niche overlap indexes of all the copepods samples

    Subsu-mTemtu-mNeote-mSubsu-mdAcrgi-mdAcane-mdSubsu-nCalel-n
    Subsu-m101)01)0.04000.90
    Temtu-m0101)0.090000.19
    Neote-m00100.06000.04
    Subsu-md0.040.09010.061)0.041)0.090.17
    Acrgi-md000.060.06101)00.11
    Acane-md0000.04010.090.18
    Subsu-n0.9000.0900.0910.071)
    Calel-n00.190.040.170.110.180.071
    Note: 1) The diet niche overlap indexes of copepods from the same sampling time (morning, midday and night).
    下载: 导出CSV
  • [1] Aranguren-Riaño N J, Guisande C, Shurin J B, et al. 2018. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity. Oecologia, 187(3): 719–730. doi: 10.1007/s00442-018-4130-6
    [2] Arroyo N L, Aarnio K, Ólafsson E. 2007. Interactions between two closely related phytal harpacticoid copepods, asymmetric positive and negative effects. Journal of Experimental Marine Biology and Ecology, 341(2): 219–227. doi: 10.1016/j.jembe.2006.10.032
    [3] Calliari D, Antezana T. 2001. Diel feeding rhythm of copepod size-fractions from Coliumo Bay, Central Chile. Scientia Marina, 65(4): 269–274. doi: 10.3989/scimar.2001.65n4269
    [4] Carrasco N K, Perissinotto R. 2011. The comparative diet of the dominant zooplankton species in the St Lucia Estuary, South Africa. Journal of Plankton Research, 33(3): 479–490. doi: 10.1093/plankt/fbq126
    [5] Dagg M. 1977. Some effects of patchy food environments on copepods. Limnology and Oceanography, 22(1): 99–107. doi: 10.4319/lo.1977.22.1.0099
    [6] David V, Sautour B, Galois R, et al. 2006. The paradox high zooplankton biomass-low vegetal particulate organic matter in high turbidity zones: what way for energy transfer?. Journal of Experimental Marine Biology and Ecology, 333(2): 202–218. doi: 10.1016/j.jembe.2005.12.045
    [7] Guisande C, Bartumeus F, Ventura M, et al. 2003. Role of food partitioning in structuring the zooplankton community in mountain lakes. Oecologia, 136(4): 627–634. doi: 10.1007/s00442-003-1306-4
    [8] Guisande C, Maneiro I, Riveiro I, et al. 2002. Estimation of copepod trophic niche in the field using amino acids and marker pigments. Marine Ecology Progress Series, 239: 147–156. doi: 10.3354/meps239147
    [9] Hu Simin, Guo Zhiling, Li Tao, et al. 2014. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol. PLoS One, 9(7): e103528. doi: 10.1371/journal.pone.0103528
    [10] Hu Simin, Guo Zhiling, Li Tao, et al. 2015. Molecular analysis of in situ diets of coral reef copepods: evidence of terrestrial plant detritus as a food source in Sanya Bay, China. Journal of Plankton Research, 37(2): 363–371. doi: 10.1093/plankt/fbv014
    [11] Huang Liangmin, Tan Yehui, Song Xingyu, et al. 2003. The status of the ecological environment and a proposed protection strategy in Sanya Bay, Hainan Island, China. Marine Pollution Bulletin, 47(1–6): 180–186. doi: 10.1016/S0025-326X(03)00070-5
    [12] Hutchinson G E. 1961. The paradox of the plankton. The American Naturalist, 95(882): 137–145. doi: 10.1086/282171
    [13] Ishii H. 1990. In situ feeding rhythms of herbivorous copepods, and the effect of starvation. Marine Biology, 105(1): 91–98. doi: 10.1007/BF01344274
    [14] Ishii H, Tanaka F. 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiologia, 451(1–3): 311–320. doi: 10.1023/A:1011814525325
    [15] Ke Zhixin, Huang Liangmin, Tan Yehui, et al. 2011. Plankton community structure and diversity in coral reefs area of Sanya Bay, Hainan Province, China. Biodiversity Science (in Chinese), 19(6): 696–701
    [16] Kiørboe T, Jiang Houshuo, Colin S P. 2010. Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods. Proceedings of the Royal Society B: Biological Sciences, 277(1698): 3229–3237. doi: 10.1098/rspb.2010.0629
    [17] Kimmel D G. 2011. Plankton consumer groups: copepods. In: Wolanski E, McLusky D S, eds. Treatise on Estuarine and Coastal Science. Amsterdam: Elsevier, 95–126
    [18] Kleppel G S. 1993. On the diets of calanoid copepods. Marine Ecology Progress Series, 99: 183–195. doi: 10.3354/meps099183
    [19] Laakmann S, Kochzius M, Auel H. 2009. Ecological niches of Arctic deep-sea copepods: Vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition. Deep Sea Research Part I: Oceanographic Research Papers, 56(5): 741–756. doi: 10.1016/j.dsr.2008.12.017
    [20] Lee D B, Song H Y, Park C, et al. 2012. Copepod feeding in a coastal area of active tidal mixing: diel and monthly variations of grazing impacts on phytoplankton biomass. Marine Ecology, 33(1): 88–105. doi: 10.1111/j.1439-0485.2011.00453.x
    [21] Leising A W, Pierson J J, Cary S, et al. 2005. Copepod foraging and predation risk within the surface layer during night-time feeding forays. Journal of Plankton Research, 27(10): 987–1001. doi: 10.1093/plankt/fbi084
    [22] Levins R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton: Princeton University Press, 65–70
    [23] Lewis J B, Bray R D. 1983. Community structure of ophiuroids (Echinodermata) from three different habitats on a coral reef in Barbados, West Indies. Marine Biology, 73(2): 171–176. doi: 10.1007/BF00406885
    [24] Lombard F, Koski M, Kiørboe T. 2013. Copepods use chemical trails to find sinking marine snow aggregates. Limnology and Oceanography, 58(1): 185–192. doi: 10.4319/lo.2013.58.1.0185
    [25] Mackas D L, Sefton H, Miller C B, et al. 1993. Vertical habitat partitioning by large calanoid copepods in the oceanic subarctic Pacific during Spring. Progress in Oceanography, 32(1–4): 259–294. doi: 10.1016/0079-6611(93)90017-8
    [26] Nejstgaard J C, Frischer M E, Raule C L, et al. 2003. Molecular detection of algal prey in copepod guts and fecal pellets. Limnology and Oceanography: Methods, 1(1): 29–38. doi: 10.4319/lom.2003.1.29
    [27] Pagano M, Kouassi E, Saint-Jean L, et al. 2003. Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrié, Côte d’Ivoire). Estuarine, Coastal and Shelf Science, 56(3–4): 433–445. doi: 10.1016/S0272-7714(02)00193-2
    [28] Pianka E R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4: 53–74. doi: 10.1146/annurev.es.04.110173.000413
    [29] Pierson J J, Frost B W, Leising A W. 2013. Foray foraging behavior: seasonally variable, food-driven migratory behavior in two calanoid copepod species. Marine Ecology Progress Series, 475: 49–64. doi: 10.3354/meps10116
    [30] Saito H, Taguchi S. 1996. Diel feeding behavior of neritic copepods during spring and fall blooms in Akkeshi Bay, eastern coast of Hokkaido, Japan. Marine Biology, 125(1): 97–107. doi: 10.1007/BF00350764
    [31] Sato K I, Yamaguchi A, Ueno H, et al. 2011. Vertical segregation within four grazing copepods in the Oyashio region during early spring. Journal of Plankton Research, 33(8): 1230–1238. doi: 10.1093/plankt/fbr018
    [32] Schnetzer A, Steinberg D. 2002. Natural diets of vertically migrating zooplankton in the Sargasso Sea. Marine Biology, 141(2): 403. doi: 10.1007/s00227-002-0917-3
    [33] Teuber L, Schukat A, Hagen W, et al. 2014. Trophic interactions and life strategies of epi- to bathypelagic calanoid copepods in the tropical Atlantic Ocean. Journal of Plankton Research, 36(4): 1109–1123. doi: 10.1093/plankt/fbu030
    [34] Wong C K, Chen Qingchao, Huang Liangmin. 1991. Fluorescence analysis of the gut contents of calanoid copepods in the Zhujiang River Estuary. Marine Sciences, (3): 60–64
    [35] Yin Jianqiang, Zhang Guxian, Huang Liangmin, et al. 2004. Diel vertical migration of zooplankton in Sanya Bay, Hainan Province, China. Journal of Tropical Oceanography (in Chinese), 23(5): 25–33
    [36] Yokoyama L Q, Lembo Duarte L F, Zacagnini Amaral A C. 2008. Reproductive cycle of Ophionereis reticulata (Ophiuroidea, Echinodermata) on the southeast coast of Brazil. Invertebrate Reproduction & Development, 51(2): 111–118. doi: 10.1080/07924259.2008.9652261
    [37] Zhao Meixia, Yu Kefu, Shi Qi, et al. 2013. Source, distribution and influencing factors of sediments on Luhuitou fringing reef, Northern South China Sea. Chinese Science Bulletin (in Chinese), 58(17): 1583–1589
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  51
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-19
  • 录用日期:  2019-04-22
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回