Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community

Huan Wang Zhangxi Hu Zhaoyang Chai Yunyan Deng Zifeng Zhan Ying Zhong Tang

Huan Wang, Zhangxi Hu, Zhaoyang Chai, Yunyan Deng, Zifeng Zhan, Ying Zhong Tang. Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community[J]. Acta Oceanologica Sinica, 2020, 39(4): 110-119. doi: 10.1007/s13131-020-1585-1
Citation: Huan Wang, Zhangxi Hu, Zhaoyang Chai, Yunyan Deng, Zifeng Zhan, Ying Zhong Tang. Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community[J]. Acta Oceanologica Sinica, 2020, 39(4): 110-119. doi: 10.1007/s13131-020-1585-1

doi: 10.1007/s13131-020-1585-1

Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community

Funds: The National Natural Science Foundation of China under contract Nos 61533011 and 41776125; the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences under contract No. U1606404; the Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology under contract No. 2016ASKJ02; the National Key R&D Program of China under contract No. 2017YFC1404300; the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology under contract No. LMEES-CTSP-2018-1.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Locations of sampling sites in the Sansha Bay, Ningde, China.

    Figure  2.  The cell density of P. donghaiense and the chlorophyll a of different samples in the coastal waters of the Sansha Bay, Ningde, China. Error bars indicate ±1×SD. a. Chlorophyll a, and b. cell density of P. donghaiense.

    Figure  3.  Relative abundance of the top 20 genera (a) and species (b) of dinoflagellates in the 50 samples. The abundance is presented as percentage of each taxon in the total reads of valid sequences of all dinoflagellates in a sample. Note that “others” indicates the total of all other taxa except for the top 20 taxa (genera or species), which will allow a 100 percentage for all taxa. The annotations “uncultured dinofalgellate” was the original annotation of a reference sequence in the GenBank that was not convincingly identified to any particular genus or species.

    Figure  4.  Principal coordinates analysis (PCoA) plot on the Bray-Curtis distance matrix and depicting patterns of beta diversity for dinoflagellate communities of all samples. Different broken circles represent different clusters.

    Figure  5.  Redundancy analysis (RDA) biplot for the relationship between dinoflagellate community and environmental variables.

    Table  1.   Categorization of samples according to sampling timing (pre-, during, and after blooms) and locations

    0331 Non-blooming0422 Blooming0503 Blooming0513 Blooming0531 Non-bloomig0719 Non-blooming
    Sample IDA0331aA0422aE0503aA0513aA0531aA0719a
    A0331bA0422bE0503bA0513bA0531bA0719b
    B0331aB0422aA0503aB0513aB0531aB0719A
    B0331bB0422bA0503bB0513bB0531bB0719b
    C0331aC0422aB0503aC0513aC0531aC0719a
    C0331bC0422bB0503bC0513bC0531bC0719b
    D0331aD0422aC0503aD0513aD0531aD0719a
    D0331bD0422bC0503bD0513bD0531bD0719b
    D0503a
    D0503b
    下载: 导出CSV

    Table  2.   The ratio of dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorus (as ${\rm{PO}}_4^{3-} $-P) (DIN/DIP)

    DateMaxMinMean±SD
    033121.518.8 20.4±1.2
    042217.84.08.3±6.4
    050314.63.46.9±5.2
    0513 5.83.44.1±1.2
    053146.97.427.4±19.7
    0719 9.94.77.0±2.2
    下载: 导出CSV

    Table  3.   Correlations between P. donghaiense cell density and other environmental variables and diversity indices of dinoflagellate community, as measured with the rank correlation coefficient or Spearman’s rho

    Number of OTUsShannon-Wiener indexGini-Simpson indexChao1 index
    Spearman rho (p-level)Spearman rho (p-level)Spearman rho (p-level)Spearman rho (p-level)
    P. donghaiense vs. diversity indices–0.52 (<0.000 1***)–0.67 (<0.000 1***)–0.609 (0.001**)–0.37 (0.001**)
    Chl a vs. diversity indices–0.43 (0.031*)–0.51 (0.009*)–0.56 (0.004*)0.01 (0.007**)
    Temperature vs. diversity indices0.29 (0.156)0.37 (0.069)0.35 (0.088)0.38 (0.059)
    Salinity vs. diversity indices0.16 (0.452)0.23 (0.26)0.22 (0.0286*)0.37 (0.069)
    Nitrite vs. diversity indices0.62 (0.001**)0.57 (0.003**)0.53 (0.007**)0.29 (0.15)
    Nitrate vs. diversity indices0.48 (0.015*)0.48 (0.013*)0.48 (0.014*)0.07 (0.756)
    TN vs. diversity indices–0.62 (0.001**)–0.72 (0.001**)–0.76 (0.001**)–0.43 (0.034*)
    TP vs. diversity indices–0.52 (0.007**)–0.64 (0.001**)–0.67 (<0.000 1***)0.37 (0.73)
    Phosphate vs. diversity indices–0.009 (0.967)0.01 (0.968)–0.01 (0.971)–0.29 (0.159)
    Ammonium vs. diversity indices0.24 (0.328)0.03 (0.900)–0.04 (0.85)0.007 (0.97)
    Note: The sample sizes for all were 50 (n=50). * 0.01<p<0.05; ** 0.001<p<0.01; *** p<0.001.
    下载: 导出CSV
  • [1] Anderson D M, Cembella A D, Hallegraeff G M. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science, 4: 143–176. doi: 10.1146/annurev-marine-120308-081121
    [2] Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25: 704–726. doi: 10.1007/BF02804901
    [3] Aranda M, Li Y, Liew Y J, et al. 2016. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 6: 39734. doi: 10.1038/srep39734
    [4] Burkholder J M, Azanza R V, Sako Y. 2006. The ecology of harmful dinoflagellates. In: Granéli E, Turner J T, eds. Ecology of Harmful Algae. Berlin, Heidelberg: Springer, 53–66
    [5] Chai Zhaoyang, He Zhili, Deng Yunyan, et al. 2018. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses. Molecular Ecology, 27(4): 1081–1093. doi: 10.1111/mec.14496
    [6] Chai Zhaoyang, Wang Huan, Deng Yunyan, et al. 2020. Harmful algal blooms significantly reduce the resource use efficiency in a coastal plankton community. Science of The Total Environment, 704: 135381. doi: 10.1016/j.scitotenv.2019.135381
    [7] Cui Lei, Lu Xinxin, Dong Yuelei, et al. 2018. Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks. Ecotoxicology and Environmental Safety, 159: 85–93. doi: 10.1016/j.ecoenv.2018.04.043
    [8] Ens E J, French K, Bremner J B. 2009. Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata. Plant and Soil, 316(1–2): 125–137. doi: 10.1007/s11104-008-9765-3
    [9] Felpeto A B, Roy S, Vasconcelos V M. 2018. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos, 127(1): 85–98. doi: 10.1111/oik.04046
    [10] Huse S M, Dethlefsen L, Huber J A, et al. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics, 4(11): e1000255. doi: 10.1371/journal.pgen.1000255
    [11] JOGFS International Project Office. 1994. JGOFS report No. 19. protocols for the Joint Global Ocean Flux Studies (JGOFS) core measurements. Bergen, Norway: JGOFS International Project Office, Center for Studies of Environment and Resources
    [12] Jonsson P R, Pavia H, Toth G. 2009. Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proceedings of the National Academy of Sciences of the United States of America, 106(27): 11177–11182. doi: 10.1073/pnas.0900964106
    [13] Landsberg J H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2): 113–390. doi: 10.1080/20026491051695
    [14] Leão P N, Ramos V, Vale M, et al. 2012. Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microbial Ecology, 63(1): 85–95. doi: 10.1007/s00248-011-9939-z
    [15] Leão P N, Vasconcelos M T S D, Vasconcelos V M. 2009. Allelopathy in freshwater cyanobacteria. Critical Reviews in Microbiology, 35(4): 271–282. doi: 10.3109/10408410902823705
    [16] Leflaive J, Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology, 52(2): 199–214. doi: 10.1111/j.1365-2427.2006.01689.x
    [17] Legendre P, Oksanen J, ter Braak C J F. 2011. Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution, 2(3): 269–277. doi: 10.1111/j.2041-210X.2010.00078.x
    [18] Li Hongmei, Tang Hongjie, Shi Xiaoyong, et al. 2014. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased Harmful Algal Blooms. Harmful Algae, 39: 92–101. doi: 10.1016/j.hal.2014.07.002
    [19] Li Ji, Glibert P M, Zhou Mingjiang, et al. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series, 383: 11–26. doi: 10.3354/meps07975
    [20] Lin Senjie, Cheng Shifeng, Song Bo, et al. 2015. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 350(6261): 691–694. doi: 10.1126/science.aad0408
    [21] Lin Jianing, Yan Tian, Zhang Qingchun, et al. 2014. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Marine Pollution Bulletin, 88(1–2): 302–310. doi: 10.1016/j.marpolbul.2014.08.026
    [22] Lu Douding, Goebel J, Qi Yuzao, et al. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae, 4(3): 493–505. doi: 10.1016/j.hal.2004.08.015
    [23] Miao Yu, Wang Zhu, Liao Runhua, et al. 2017. Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater. Chemical Engineering Journal, 330: 757–763. doi: 10.1016/j.cej.2017.08.011
    [24] Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical & Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 423–453
    [25] Ptacnik R, Solimini A G, Andersen T, et al. 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 5134–5138. doi: 10.1073/pnas.0708328105
    [26] Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S A, eds. Bioinformatics Methods and Protocols. Totowa: Humana Press, 365-386
    [27] Schneider A R, Gommeaux M, Duclercq J, et al. 2017. Response of bacterial communities to Pb smelter pollution in contrasting soils. Science of the Total Environment, 605-606: 436–444. doi: 10.1016/j.scitotenv.2017.06.159
    [28] Smayda T J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundström B, Edler L, et al., eds. Toxic Marine Phytoplankton. New York, USA: Elsevier, 29–40
    [29] Smayda T J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42: 1137–1153. doi: 10.4319/lo.1997.42.5_part_2.1137
    [30] State Oceanic Administration. 2001–2015. Bulletin of marine disaster of China (in Chinese). http://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb [2019-12-03/2020-02-24]
    [31] Sun Zhen, Li Guoping, Wang Chengwei, et al. 2014. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Scientific Reports, 4: 6966
    [32] Sunagawa S, Coelho L P, Chaffron S, et al. 2015. Structure and function of the global ocean microbiome. Science, 348(6237): 1261359. doi: 10.1126/science.1261359
    [33] Valderrama J C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10(2): 109–122. doi: 10.1016/0304-4203(81)90027-X
    [34] Vaulot D, Eikrem W, Viprey M, et al. 2008. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiology Reviews, 32(5): 795–820. doi: 10.1111/j.1574-6976.2008.00121.x
    [35] West T L, Marshall H G, Tester P A. 1996. Natural phytoplankton community responses to a bloom of the toxic dinoflagellate Gymnodinium breve Davis off the North Carolina coast. Castanea, 61(4): 356–368
    [36] Xu Ning, Duan Shunshan, Li Aifen, et al. 2010. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae, 9(1): 13–17. doi: 10.1016/j.hal.2009.06.002
    [37] Xu Xin, Yu Zhiming, Cheng Fangjin, et al. 2017. Molecular diversity and ecological characteristics of the eukaryotic phytoplankton community in the coastal waters of the Bohai Sea, China. Harmful Algae, 61: 13–22. doi: 10.1016/j.hal.2016.11.005
    [38] Yao Weiming, Li Chao, Gao Junzhang. 2006. Red tide plankton along the south coastal area in Zhejiang province. Marine Science Bulletin (in Chinese), 25(3): 87–91
    [39] Zhang Chuansong, Wang Jiangtao, Zhu Dedi, et al. 2008. The preliminary analysis of nutrients in harmful algal blooms in the East China Sea in the spring and summer of 2005. Haiyang Xuebao (in Chinese), 30(3): 153–159
    [40] Zhou Jin, Richlen M L, Sehein T R, et al. 2018. Microbial community structure and associations during a marine dinoflagellate bloom. Frontiers in Microbiology, 9: 1201. doi: 10.3389/fmicb.2018.01201
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  37
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-24
  • 录用日期:  2019-02-19
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回