Observation of an anti-cyclonic mesoscale eddy in the subtropical northwestern Pacific Ocean from altimetry and Argo profiling floats

Yang Wang Cheng Li Qingyu Liu

Yang Wang, Cheng Li, Qingyu Liu. Observation of an anti-cyclonic mesoscale eddy in the subtropical northwestern Pacific Ocean from altimetry and Argo profiling floats[J]. Acta Oceanologica Sinica, 2020, 39(7): 79-90. doi: 10.1007/s13131-020-1596-y
Citation: Yang Wang, Cheng Li, Qingyu Liu. Observation of an anti-cyclonic mesoscale eddy in the subtropical northwestern Pacific Ocean from altimetry and Argo profiling floats[J]. Acta Oceanologica Sinica, 2020, 39(7): 79-90. doi: 10.1007/s13131-020-1596-y

doi: 10.1007/s13131-020-1596-y

Observation of an anti-cyclonic mesoscale eddy in the subtropical northwestern Pacific Ocean from altimetry and Argo profiling floats

Funds: The National Program on Global Change and Air-Sea Interaction under contract No. GASI-IPOVAI-01-02; the program for scientific research start-up funds of Guangdong Ocean University under contract No. R19011; the fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) under contract No. ZJW-2019-08.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Mean sea surface height (cm) of the northwestern Pacific Ocean from Rio et al. (2009) the contour interval is 10 cm and the blue rectangle indicates the regions where the anti-cyclonic eddy (AE) was observed (a), and the locations of the Argo floats (gray stars) deployed in the blue rectangle (b). The contours denote the altimeter sea level anomaly (SLA) field on that day. The contour interval of the SLA is 2 cm, and the negative, zero, and positive values are marked by the gray dashed, thick solid, thin solid lines, respectively. The green solid line denotes the trajectory of the AE and the purple dots’ interval is two weeks.

    Figure  2.  Evolutions of the AE detected by altimeter SLA from March 27 to July 25, 2014. The contours denote the altimeter SLA field on that day. The contour interval of the SLA is 3 cm, and the negative, zero, and positive values are marked by the gray dashed, thick solid, thin solid lines, respectively. The purple stars denote the locations of the Argo floats. The gray rectangle denotes the field of AE during T1 period; the red rectangle denotes the field of AE during T2 period.

    Figure  3.  Daily evolution of radius (a), amplitude (b) , EKE (c) of the AE. The red and green rectangles indicate the T1 and T2 period, respectively.

    Figure  4.  Vertical profiles of temperature anomaly (a), salinity anomaly (b), density anomaly (c), and vorticity (maximum within the eddy core) (d) inside the composite AE. The blue (red) lines denote the values in T1 (T2) period.

    Figure  7.  Vertical sections of the zonal geostrophic current anomaly $V'$ (m/s) of the composite AE at Δdx=0 during T1 (a) and T2 (b) period (The contour interval is 0.01 m/s and the dashed lines indicate the zero contours), and vertical sections of the density (black contours; in kg/m3) and density anomaly (color shading; in kg/m3) of the composite AE at Δdx=0 during T1 (c) and (d) period (The black contours’ interval is 0.2 kg/m3).

    Figure  5.  $T'$ fields (°C) of the composite AE at 50×104, 250×104, 450×104, 600×104, 750×104 and 900×104 Pa during periods T1 (a) to T2 (b). The contour interval is 0.01°C and the units of the X-axes (Δdx) and Y-axes (Δdy) are both kilometer.

    Figure  6.  $S'$ fields (psu) of the composite AE at 50×104, 250×104, 450×104, 600×104, 750×104 and 900×104 Pa during periods T1 (a) to T2 (b). The contour interval is 0.008 and the units of the X-axes (Δdx) and y-axes (Δdy) are both kilometer.

    Figure  8.  Horizontal fields of geostrophic velocity anomaly (vectors; in m/s) and $DH'$ (color shading; in m2/s2) of the composite AE during T1 (a) and T2 (b) period. The units of the X-axes (Δdx) and Y-axes (Δdy) are both km.

    Figure  9.  Vertical profile of the rotational speed of AE (solid line) and its errors (shadings) in T1 (a) and T2 (b) period. The dashed line indicates the mean propagation speed of the AE (0.08 m/s).

    Figure  10.  Mean available heat anomaly (a) and salt anomaly (b) , inside composite AE during period T1 (blue line) and T2 (red line).

    Figure  11.  Mean vertical profiles of the EPE (a), EKE (b) and BCI (C) inside the composite AE during T1 period (blue line) and T2 period (red line).

    Figure  12.  The relative distances rn of the last six trapped Argo floats to the center of the AE (a) and the percentage of the remaining trapped Argo floats (b). Different colors represent different Argo floats.

  • [1] Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2−4): 106–119. doi: 10.1016/j.pocean.2008.10.013
    [2] Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research, 116(C11): C11025. doi: 10.1029/2011JC007134
    [3] Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [4] Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606. doi: 10.1029/2007GL030812
    [5] Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [6] Chen Gengxin, Gan Jianping, Xie Qiang, et al. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. Journal of Geophysical Research, 117(C5): C05021. doi: 10.1029/2011JC007724
    [7] Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. 2014. An exceptional anticyclonic eddy in the South China Sea in 2010. Journal of Geophysical Research, 119(2): 881–897. doi: 10.1002/2013JC009314
    [8] Early J J, Samelson R M, Chelton D B. 2011. The evolution and propagation of quasigeostrophic ocean Eddies. Journal of Physical Oceanography, 41(8): 1535–1555. doi: 10.1175/2011JPO4601.1
    [9] Flierl G R. 1981. Particle motions in large-amplitude wave fields. Geophysical & Astrophysical Fluid Dynamics, 18(1−2): 39–74. doi: 10.1080/03091928108208773
    [10] Hu Jianyu, Zheng Quanan, Sun Zhenyu, et al. 2012. Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. Journal of Geophysical Research, 117(C3): C03010. doi: 10.1029/2011JC007525
    [11] Jing Zhao, Wu Lixin, Li Lei, et al. 2011. Turbulent diapycnal mixing in the subtropical northwestern Pacific: spatial-seasonal variations and role of eddies. Journal of Geophysical Research, 116(C10): C10028. doi: 10.1029/2011JC007142
    [12] Li Yuanlong, Wang Fan. 2012. Spreading and salinity change of North Pacific Tropical Water in the Philippine Sea. Journal of Oceanography, 68(3): 439–452. doi: 10.1007/s10872-012-0110-3
    [13] Li Yuanlong, Wang Fan, Sun Yan. 2012. Low-frequency spiciness variations in the tropical Pacific Ocean observed during 2003-2012. Geophysical Research Letters, 39(23): L23601. doi: 10.1029/2012GL053971
    [14] Li Cheng, Zhang Zhiwei, Zhao Wei, et al. 2017. A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data. Journal of Geophysical Research, 122(5): 3586–3598
    [15] Liang Junhong, McWilliams J C, Kurian J, et al. 2012. Mesoscale variability in the northeastern tropical Pacific: Forcing mechanisms and eddy properties. Journal of Geophysical Research, 117(C7): C07003. doi: 10.1029/2012JC008008
    [16] Liu Yu, Dong Changming, Guan Yuping, et al. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 68: 54–67. doi: 10.1016/j.dsr.2012.06.001
    [17] Morrow R, Fang Fangxin, Fieux M, et al. 2003. Anatomy of three warm-core Leeuwin current eddies. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12−13): 2229–2243. doi: 10.1016/S0967-0645(03)00054-7
    [18] Noh Y, Yim B Y, You S H, et al. 2007. Seasonal variation of eddy kinetic energy of the North Pacific Subtropical Countercurrent simulated by an eddy-resolving OGCM. Geophysical Research Letters, 34(7): L07601. doi: 10.1029/2006GL029130
    [19] Oey L Y. 2008. Loop current and deep eddies. Journal of Physical Oceanography, 38(7): 1426–1449. doi: 10.1175/2007JPO3818.1
    [20] Okubo A. 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3): 445–454. doi: 10.1016/0011-7471(70)90059-8
    [21] Qiu Bo. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10): 2471–2486. doi: 10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2
    [22] Qiu Bo, Chen Shuiming. 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. Journal of Physical Oceanography, 35(4): 458–473. doi: 10.1175/JPO2696.1
    [23] Qiu Bo, Chen Shuiming. 2010. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1): 213–225. doi: 10.1175/2009JPO4285.1
    [24] Qiu Bo, Chen Shuiming. 2013. Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre. Journal of Physical Oceanography, 43(2): 344–358. doi: 10.1175/JPO-D-12-0133.1
    [25] Rio M H, Schaeffer P, Moreaux G, et al. 2009. A new mean dynamic topography computed over the global ocean from GRACE data, altimetry and in-situ measurements. In: OceanObs’09 Conference Proceedings. Venice: IOC/UNESCO and ESA, vol. 25.
    [26] Rio M H, Schaeffer P, Moreaux G, et al. 2009. A new mean dynamic topography computed over the global ocean from GRACE data, altimetry and in-situ measurements. In: OceanObs’09 Conference Proceedings. Venice: IOC/UNESCO and ESA, vol. 25. doi: 10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO;2
    [27] Roemmich D, Gilson J. 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability?. Journal of Physical Oceanography, 31(3): 675–687. doi: 10.1175/1520-0485(2001)031<0675:ETOHAT>2.0.CO;2
    [28] Roullet G, Capet X, Maze G. 2014. Global interior eddy available potential energy diagnosed from Argo floats. Geophysical Research Letters, 41(5): 1651–1656. doi: 10.1002/2013GL059004
    [29] Rudnick D L, Jan S, Centurioni L, et al. 2011. Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24(4): 52–63. doi: 10.5670/oceanog.2011.94
    [30] Sasaki Y N, Schneider N, Maximenko N, et al. 2010. Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophysical Research Letters, 37(7): L07708. doi: 10.1029/2010GL042716
    [31] Stammer D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. Journal of Physical Oceanography, 27(8): 1743–1769. doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2
    [32] Suga T, Kato A, Hanawa K. 2000. North Pacific Tropical Water: Its climatology and temporal changes associated with the climate regime shift in the 1970s. Progress in Oceanography, 47(2-4): 223–256. doi: 10.1016/S0079-6611(00)00037-9
    [33] Sun Wenjin, Dong Changming, Wang Ruyun, et al. 2017. Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research, 122(2): 1476–1496
    [34] Talley L D. 1993. Distribution and formation of North Pacific intermediate water. Journal of Physical Oceanography, 23(3): 517–537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
    [35] Wang Jia, Ikeda M. 1997. Diagnosing ocean unstable baroclinic waves and meanders using the quasigeostrophic equations and Q-Vector method. Journal of Physical Oceanography, 27(6): 1158–1172. doi: 10.1175/1520-0485(1997)027<1158:DOUBWA>2.0.CO;2
    [36] Wang Jia, Jin Meibing, Patrick E V, et al. 2001. Numerical simulations of the seasonal circulation patterns and thermohaline structures of Prince William Sound, Alaska. Fisheries Oceanography, 10(S1): 132–148
    [37] Weiss J. 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2–3): 273–294. doi: 10.1016/0167-2789(91)90088-Q
    [38] Wunsch C. 1999. Where do ocean eddy heat fluxes matter?. Journal of Geophysical Research, 104(C6): 13235–13249. doi: 10.1029/1999JC900062
    [39] Xie Shangping. 2013. Advancing climate dynamics toward reliable regional climate projections. Journal of Ocean University of China, 12(2): 191–200. doi: 10.1007/s11802-013-2277-7
    [40] Xiu Peng, Chai Fei, Xue Huijie, et al. 2012. Modeling the mesoscale eddy field in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 63: 102–117. doi: 10.1016/j.dsr.2012.01.006
    [41] Xu Lixiao, Li Peiliang, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7(1): 10505. doi: 10.1038/ncomms10505
    [42] Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [43] Yoshida S, Qiu Bo, Hacker P. 2011. Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: observations and connection to the Pacific Decadal Oscillation. Journal of Geophysical Research, 116(C12): C12009. doi: 10.1029/2011JC007286
    [44] Yuan Dongliang, Wang Zheng. 2011. Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies. Journal of Physical Oceanography, 41(5): 878–888. doi: 10.1175/2010JPO4489.1
    [45] Zhang Dongxiao, Lee T N, Johns W E, et al. 2001. The Kuroshio east of Taiwan: modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography, 31(4): 1054–1074. doi: 10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2
    [46] Zhang Zhiwei, Li Peiliang, Xu Lixiao, et al. 2015. Subthermocline eddies observed by rapid‐sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014. Geophysical Research Letters, 42(15): 6438–6445. doi: 10.1002/2015GL064601
    [47] Zhang Zhiwei, Liu Zhiyu, Richards K, et al. 2019. Elevated diapycnal mixing by a subthermocline eddy in the western equatorial Pacific. Geophysical Research Letters, 46(5): 2628–2636. doi: 10.1029/2018GL081512
    [48] Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6(1): 24349. doi: 10.1038/srep24349
    [49] Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research, 118(12): 6479–6494. doi: 10.1002/2013JC008994
    [50] Zhang Ronghua, Rothstein L M, Busalacchi A J. 1998. Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391(6670): 879–883. doi: 10.1038/36081
    [51] Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    [52] Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research, 113(C4): C04032. doi: 10.1029/2007JC004362
    [53] Zheng Quanan, Tai Changkuo, Hu Jianyu, et al. 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4): 365–376. doi: 10.1007/s10872-011-0035-2
  • 加载中
图(12)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  206
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2020-02-04
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回