The impact of concurrent variation of atmospheric meridional heat transport in western Baffen Bay and eastern Greenland on summer Arctic sea ice

Le Wang Lujun Zhang Wenfa Yang

Le Wang, Lujun Zhang, Wenfa Yang. The impact of concurrent variation of atmospheric meridional heat transport in western Baffen Bay and eastern Greenland on summer Arctic sea ice[J]. Acta Oceanologica Sinica, 2020, 39(8): 14-23. doi: 10.1007/s13131-020-1614-0
Citation: Le Wang, Lujun Zhang, Wenfa Yang. The impact of concurrent variation of atmospheric meridional heat transport in western Baffen Bay and eastern Greenland on summer Arctic sea ice[J]. Acta Oceanologica Sinica, 2020, 39(8): 14-23. doi: 10.1007/s13131-020-1614-0

doi: 10.1007/s13131-020-1614-0

The impact of concurrent variation of atmospheric meridional heat transport in western Baffen Bay and eastern Greenland on summer Arctic sea ice

Funds: The National Key Research and Development Program of China under contract Nos 2016YFC0402708, 2017YFC1502501, 2018YFC1508002 and 2016YFA0602102; the China Special Fund for Meteorological Research in the Public Interest under contract No. GYHY201506011; the National Natural Science Foundation of China under contract Nos 41975134 and 40975040.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The spatial distribution of correlation coefficients between zonal mean TAMHT of 60°N latitude and summer (June to September) Arctic SIA from 1979 to 2014. a. May, b. June and c. July. The confidence level of shade is above 0.05.

    Figure  2.  The spatial distribution of correlation coefficients between zonal-mean TAMHT of 60°N latitude and summer Arctic SIA by each month from 1979 to 2014. a. June, b. July, c. August, and d. September. The confidence level of shade is above 0.05.

    Figure  3.  The correlation between KSIA in summer and TAMHT at 60°N (a) and B-TAMHT and G-TAMHT in vertical direction (b) in June.

    Figure  4.  Time series of B-TAMHT and G-TAMHT in June (a) (dashed red and blue lines indicate the 30% percentile and 70% percentile of B-TAMHT and G-TAMHT, respectively) and spatial distribution of correlation coefficient between B-TAMHT and Arctic TAMHT on grid in June (b) (the shade is the correlation cofficient whose confidence level is above 0.05 and the green box is the extent of the B area and G area).

    Figure  5.  Composite of TAMHT in June in the three scenarios. a. WC, b. CW and c. CC.

    Figure  6.  Composite 500 hPa geopotential height (HGT) and horizontal wind (a–c), sea level pressure (SLP) and 10 m wind (d–f), surface air temperature (SAT) (g–i), and sea ice concentration (SIC) (j–l) in summer. The confidence level of squares, arrows and white dotted line is above 0.1.

    Figure  7.  Summer Arctic sea ice concentration (SIC) regressed linearly on the H index for the period of 1979–2014. The confidence level of contours is 0.05.

    Figure  8.  Composite TAMHT under three kinds of Arctic atmospheric circulation anomaly in June. a. Positive AO, b. positive NAO, c. positive AD, d. negative AO, e. negative NAO, and f. negative AD.

    Figure  9.  Summer Arctic climatic factors regressed linearly on the standardized H index for the period of 1979–2014. a. Sea level pressure, b. 500 hPa geopotential height and c. surface air temperature. The confidence level of contours is 0.05.

    Table  1.   Three different types of AMHT and their proportions in the summer half year of 1979–2014

    Transient eddyStationary eddyMean meridional circulation
    Heat value/J3.164×1057.70×1049.75×104
    Percentage/%641620
    下载: 导出CSV

    Table  2.   The anomalous years of TAMHT in June

    Anomalous years
    B-TAMHT+G-TAMHT–(WC)1982, 1998, 2004, 2007, 2008, 2011, 2012
    B-TAMHT–G-TAMHT+(CW)1986, 1988, 1995, 2005, 2010
    B-TAMHT+G-TAMHT+(OO)
    B-TAMHT–G-TAMHT–(CC)1994, 1999, 2002, 2003, 2006
    下载: 导出CSV

    Table  3.   The correlation coefficients between H index and three atmospheric circulation pattern index

    MayJun.Jul.Aug.Sep.JJAS
    AD 0.01–0.51*–0.4 –0.32–0.13–0.47*
    AO–0.28–0.43*–0.2 0.02 0.25–0.19
    NAO–0.14–0.46*–0.29–0.27 0.14–0.38
    Note: Bold represents passing the 95% confidence level and asterisk (*) represents passing the 99% confidence level.
    下载: 导出CSV
  • [1] Cavalieri D, Parkinson C, Gloersen P, et al. 1996. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. Boulder, Colorado, USA: NASA DAAC at the National Snow and Ice Data Center
    [2] Comiso J C. 2000. Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 2. Boulder, Colorado, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center
    [3] Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176–1193. doi: 10.1175/JCLI-D-11-00113.1
    [4] Comiso J C, Cavalieri D J, Parkinson C L, et al. 1997. Passive microwave algorithms for sea ice concentration: a comparison of two techniques. Remote Sensing of Environment, 60(3): 357–384. doi: 10.1016/S0034-4257(96)00220-9
    [5] Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
    [6] Dee D P, Uppala S. 2009. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 135(644): 1830–1841. doi: 10.1002/qj.493
    [7] Deser C, Teng Haiyan. 2008. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophysical Research Letters, 35(2): L02504
    [8] Döös K, Nilsson J. 2011. Analysis of the meridional energy transport by Atmospheric overturning circulations. Journal of the Atmospheric Sciences, 68(8): 1806–1820. doi: 10.1175/2010JAS3493.1
    [9] Enderton D, Marshall J. 2009. Explorations of Atmosphere-Ocean-Ice climates on an aquaplanet and their meridional energy transports. Journal of the Atmospheric Sciences, 66(6): 1593–1611. doi: 10.1175/2008JAS2680.1
    [10] Graversen R G, Mauritsen T, Tjernström M, et al. 2008. Vertical structure of recent Arctic warming. Nature, 451(7174): 53–56. doi: 10.1038/nature06502
    [11] He Shengping, Knudsen E M, Thompson D W J, et al. 2018. Evidence for predictive skill of high-latitude climate due to midsummer sea ice extent anomalies. Geophysical Research Letters, 45(17): 9114–9122. doi: 10.1029/2018GL078281
    [12] Hitchman M H, Buker M L, Tripoli G J. 1999. Influence of synoptic waves on column ozone during Arctic summer 1997. Journal of Geophysical Research: Atmospheres, 104(D21): 26547–26564. doi: 10.1029/1999JD900471
    [13] Kim D, Choi W. 2006. Decadal and year-to-year variations of the Arctic lower-stratospheric temperature for the month of March and their relationship with eddy heat flux. International Journal of Climatology, 26(8): 1125–1132. doi: 10.1002/joc.1312
    [14] Kuroda Y. 2005. On the influence of the meridional circulation and surface pressure change on the Arctic Oscillation. Journal of Geophysical Research: Atmospheres, 110(D21): D21107. doi: 10.1029/2004JD005743
    [15] Kwon Y O, Joyce T M. 2013. Northern hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio-Oyashio extension variability. Journal of Climate, 26(24): 9839–9859. doi: 10.1175/JCLI-D-12-00647.1
    [16] Liu Na, Lin Lina, Wang Yingjie, et al. 2016. Arctic autumn sea ice decline and Asian winter temperature anomaly. Acta Oceanologica Sinica, 35(7): 36–41. doi: 10.1007/s13131-016-0911-0
    [17] Lukovich J V, Barber D G. 2006. Atmospheric controls on sea ice motion in the southern Beaufort Sea. Journal of Geophysical Research: Atmospheres, 111(D18): D18103. doi: 10.1029/2005JD006408
    [18] Luo Dehai. 2005. A barotropic envelope Rossby Soliton model for block-eddy interaction: Part I. Effect of topography. Journal of the Atmospheric Sciences, 62(1): 5–21. doi: 10.1175/1186.1
    [19] Luo Dehai, Xiao Yiqing, Yao Yao, et al. 2016. Impact of Ural Blocking on winter warm Arctic-cold Eurasian anomalies: Part I. Blocking-induced amplification. Journal of Climate, 29(11): 3925–3947. doi: 10.1175/JCLI-D-15-0611.1
    [20] Mewes D, Jacobi C. 2019. Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmospheric Chemistry and Physics, 19(6): 3927–3937. doi: 10.5194/acp-19-3927-2019
    [21] Ogi M, Wallace J M. 2007. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophysical Research Letters, 34(12): L12705. doi: 10.1029/2007GL029897
    [22] Oort A H. 1971. The Observed annual cycle in the meridional transport of atmospheric energy. Journal of the Atmospheric Sciences, 28(3): 325–339. doi: 10.1175/1520-0469(1971)028<0325:TOACIT>2.0.CO;2
    [23] Overland J E, Dethloff K, Francis J A, et al. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6(11): 992–999. doi: 10.1038/nclimate3121
    [24] Overland J E, Francis J A, Hanna E, et al. 2012. The recent shift in early summer Arctic atmospheric circulation. Geophysical Research Letters, 39(19): L19804
    [25] Overland J E, Wang Muyin. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62(1): 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
    [26] Polyakov I V, Timokhov L A, Alexeev V A, et al. 2010. Arctic Ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40(12): 2743–2756. doi: 10.1175/2010JPO4339.1
    [27] Rigor I G, Wallace J M, Colony R L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18): 2648–2663. doi: 10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
    [28] Screen J A, Simmonds I, Keay K. 2011. Dramatic interannual changes of perennial arctic sea ice linked to abnormal summer storm activity. Journal of Geophysical Research: Atmospheres, 116(D15): D15105. doi: 10.1029/2011JD015847
    [29] Serreze M C, Barrett A P. 2008. The summer cyclone maximum over the central Arctic Ocean. Journal of Climate, 21(5): 1048–1065. doi: 10.1175/2007JCLI1810.1
    [30] Shi Ning, Bueh C. 2011. Two types of Arctic oscillation and their associated dynamic features. Atmospheric and Oceanic Science Letters, 4(5): 287–292. doi: 10.1080/16742834.2011.11446944
    [31] Simmonds I, Burke C, Keay K. 2008. Arctic climate change as manifest in cyclone behavior. Journal of Climate, 21(22): 5777–5796. doi: 10.1175/2008JCLI2366.1
    [32] Simmonds I, Keay K. 2009. Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979−2008. Geophysical Research Letters, 36(19): L19715. doi: 10.1029/2009GL039810
    [33] Sung M K, Kim B M, Baek E H, et al. 2016. Arctic-North Pacific coupled impacts on the late autumn cold in North America. Environmental Research Letters, 11(8): 084016. doi: 10.1088/1748-9326/11/8/084016
    [34] Walsh J E. 2014. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117: 52–63. doi: 10.1016/j.gloplacha.2014.03.003
    [35] Wang Jia, Zhang Jinlun, Watanabe E, et al. 2009. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?. Geophysical Research Letters, 36(5): L05706
    [36] Woodgate R A, Weingartner T, Lindsay R. 2010. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophysical Research Letters, 37(1): L01602
    [37] Wu Bingyi, Wang Jia, Walsh J E. 2006. Dipole Anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19(2): 210–225. doi: 10.1175/JCLI3619.1
    [38] Yao Yao, Luo Dehai, Dai Aiguo, et al. 2017. Increased quasi stationarity and persistence of Winter Ural blocking and Eurasian extreme cold events in response to Arctic warming: Part I. Insights from observational analyses. Journal of Climate, 30(10): 3549–3568. doi: 10.1175/JCLI-D-16-0261.1
    [39] Yao Yao, Luo Dehai, Zhong Linhao. 2018. Effects of northern hemisphere atmospheric blocking on Arctic sea ice decline in winter at weekly time scales. Atmosphere, 9(9): 331. doi: 10.3390/atmos9090331
    [40] Yoo C, Feldstein S B, Lee S. 2014. The prominence of a tropical convective signal in the wintertime Arctic temperature. Atmospheric Science Letters, 15(1): 7–12. doi: 10.1002/asl2.455
    [41] Zhang Xiangdong, He Juanxiong, Zhang Jing, et al. 2012. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3(1): 47–51
    [42] Zhang Xiangdong, Ikeda M, Walsh J E. 2003. Arctic sea ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice-ocean model. Journal of Climate, 16(13): 2159–2177. doi: 10.1175/2758.1
    [43] Zhang Xiangdong, Sorteberg A, Zhang Jing, et al. 2008. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophysical Research Letters, 35(22): L22701. doi: 10.1029/2008GL035607
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  58
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-01
  • 录用日期:  2020-03-05
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回