Zooplankton community size-structure change and mesh size selection under the thermal stress caused by a power plant in a semi-enclosed bay

Qianwen Shao Yifeng Zhu Meixia Dai Xia Lin Chengxu Zhou Xiaojun Yan

Qianwen Shao, Yifeng Zhu, Meixia Dai, Xia Lin, Chengxu Zhou, Xiaojun Yan. Zooplankton community size-structure change and mesh size selection under the thermal stress caused by a power plant in a semi-enclosed bay[J]. Acta Oceanologica Sinica, 2020, 39(8): 62-70. doi: 10.1007/s13131-020-1634-9
Citation: Qianwen Shao, Yifeng Zhu, Meixia Dai, Xia Lin, Chengxu Zhou, Xiaojun Yan. Zooplankton community size-structure change and mesh size selection under the thermal stress caused by a power plant in a semi-enclosed bay[J]. Acta Oceanologica Sinica, 2020, 39(8): 62-70. doi: 10.1007/s13131-020-1634-9

doi: 10.1007/s13131-020-1634-9

Zooplankton community size-structure change and mesh size selection under the thermal stress caused by a power plant in a semi-enclosed bay

Funds: The National Key Research and Development Program of China under contract No. 2018YFD0900702; the K.C. Wong Magna Fund in Ningbo University (SS).
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographical position of the Guohua Power Plant (square frame in a) in the Xiangshan Bay and the location of sampling stations (points in b) near the Guohua Power Plant. Star in b represents the position of outfall of Guohua Power Plant. The four sections are labelled with black lines in b.

    Figure  2.  Variations of increment of temperature (Δt) at each sampling stations and the minimum and mean temperature (mean±SD) in four seasons.

    Figure  3.  Annual average zooplankton abundance of four sampling sections in different size-class (20−200 μm, 200−500 μm, 500−1 000 μm, 1 000 −2 000 μm, 2 000−5 000 μm, 5 000−10 000 μm, >10 000 μm and 20− >10 000 μm). D2, D7, D12 and D20 stand for sections at a distance of 0.2, 0.7, 1.2 and 2 km away from the outfall of the power plant, respectively.

    Figure  4.  Size frequency distribution of zooplankton in three different mesh size nets.

    Figure  5.  Abundance of dominant species (Centropages abdominalis, Acartia clausi, Centropages tenuiremis, Paracalanus crassirostris, Paracalanus parvus, Oithona brevicornis, Oithona fallax, Oithona similis) identified in three different mesh size nets.

    Table  1.   Mean salinity of sampling months in four sections (mean±SD)

    MonthMonth averageSection
    D2D7D12D20
    February28.3±0.328.4±0.128.2±0.228.3±0.528.3±0.3
    May25.7±1.626.5±0.125.6±1.826.0±0.725.0±2.1
    August22.8±0.422.9±0.222.8±0.222.7±0.222.8±0.5
    November24.7±0.325.1±0.324.9±0.224.7±0.224.6±0.2
    Note: D2, D7, D12 and D20 stand for sections at a distance of 0.2, 0.7, 1.2 and 2 km away from the outfall of the power plant, respectively.
    下载: 导出CSV

    Table  2.   Main species of different size-class zooplankton

    Size classMain species
    20−200 μmTintinnopsis butschlii, Difflugia sp., Trochophore
    200−500 μmcopepods nauplius larva, eggs, Oithona brevicornis
    500−1 000 μmcopepods larva, Oithona fallax, Paracalanus aculeatus
    1 000−2 000 μmCentropages abdominalis, Centropages tenuiremis, Oikopleura dioica
    2 000−5 000 μmEucalanus crassus, Calanus sinicus, Eucalanus subcrassus
    5 000−10 000 μmZonosagitta bedoti, Pseudeuphausia sinica, Acanthomysis brevirostris
    >10 000 μmZonosagitta nagae, Abyssisagitta pulchra, Acetes japonicus
    Note: In the same size group, species are listed in descending order according to abundance, and only the top 3 species are listed.
    下载: 导出CSV

    Table  3.   Individual mean length, Shannon−Wiener index and evenness index in four sections

    Section
    D2D7D12D20
    Individual mean length/μm600.7659.1672.5726.2
    Shannon−Wiener index1.27±0.16a1.56±0.32a1.57±0.44a1.43±0.24a
    Evenness index0.51±0.09a0.61±0.12a0.60±0.14a0.57±0.08a
    Note: Diversity indices with same letters (a) among sections in the superscript mean no significant difference at 0.05 levels. D2, D7, D12 and D20 stand for sections at a distance of 0.2, 0.7, 1.2 and 2 km away from the outfall of the power plant, respectively.
    下载: 导出CSV

    Table  4.   Differences (mean±SD) among three different mesh size nets in the annual average abundance (ind./m3) and diversity indices (species richness, evenness index and Shannon−Wiener diversity index)

    Mesh sizeAbundanceSpecies richnessEvennessShannon−Wiener
    net I494.4±104.7c42±0.3c0.5±0.3b1.1±0.7b
    net II9531.1±1079.5b47±0.4b0.7±0.1a1.9±0.4a
    net III27690.0±1633.7a 61±0.4a0.6±0.1a2.0±0.5a
    Note: Mean values with different letters (a, b, c) in the superscript are significantly different at the 0.05 level among mesh, net I = 505 µm mesh size, net II = 160 µm mesh size, and net III = 77 µm mesh size.
    下载: 导出CSV

    Table  5.   Dominant species, dominance and abundance reductions (AR, %) recorded from each mesh size net (net I=505 μm mesh size, net II=160 μm mesh size, and net III=77 μm mesh size)

    Dominant speciesnet Inet IInet IIIAR nII–nIAR nIII–nIAR nIII–nII
    Centropages abdominalis0.49 –77.1 –39.5 62.2
    Acartia clausi0.03100100–63.9
    Centropages tenuiremis0.02100100–84.5
    Paracalanus crassirostris0.030.04100100 70.2
    Paracalanus parvus0.06100100–89.6
    Oithona brevicornis0.0510010092
    Oithona fallax0.06100100 97.2
    Oithona similis0.03100100 82.5
    下载: 导出CSV

    Table  6.   ANOSIM and SIMPER showing the differences in zooplankton communities among three different mesh size nets

    net I, net IInet I, net IIInet II, net III
    ANOSIMR0.70.80.4
    p 0.001 0.001 0.001
    SIMPERAverage dissimilarity/%90.7 94.8 62.3
    Discriminating species 1copepod larvaecopepod larvaecopepod nauplius larvae
    Contribution/%9.98.26.5
    Discriminating species 2Oithona brevicorniscopepod nauplius larvaeOithona fallax
    Contribution/%5.38.14.1
    Discriminating species 3eggsOithona brevicorniscopepod larvae
    Contribution/%5.35.23.8
    Note: Six discriminating species are listed in the table (net I = 505 µm mesh size, net II = 160 µm mesh size, and net III = 77 µm mesh size).
    下载: 导出CSV
  • [1] Alden R W. 1979. Effects of a thermal discharge on the mortality of copepods in a subtropical estuary. Environmental Pollution, 20(1): 3–19. doi: 10.1016/0013-9327(79)90049-1
    [2] Antacli J C, Hernández D, Sabatini M E. 2010. Estimating copepods’ abundance with paired nets: Implications of mesh size for population studies. Journal of Sea Research, 63(1): 71–77. doi: 10.1016/j.seares.2009.09.004
    [3] Bamber R N. 1995. The influence of rising background temperature on the effects of marine thermal effluents. Journal of Thermal Biology, 20(1–2): 105–110. doi: 10.1016/0306-4565(94)00038-K
    [4] Bernhard M, Möller F, Nassogne A, et al. 1973. Influence of pore size of plankton nets and towing speed on the sampling performance of two high-speed samplers (Delfino I and II) and its consequences for the assessment of plankton populations. Marine Biology, 20(2): 109–136. doi: 10.1007/BF00351450
    [5] Chew L L, Chong V C, Wong R C S, et al. 2015. Three decades of sea water abstraction by Kapar power plant (Malaysia): What impacts on tropical zooplankton community?. Marine Pollution Bulletin, 101(1): 69–84. doi: 10.1016/j.marpolbul.2015.11.022
    [6] Clarke K R, Gorley R N, Somerfield P J, et al. 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth, UK: Primer-E Ltd, 256
    [7] Cushing D H, Humphrey G F, Banse K, et al. 1958. Report of the committee on terms and equivalents. Rapp P-V. Réun Cons Int Explor Scient Mer Méditerr, 144: 15–16
    [8] Davies R M, Jensen L D. 1975. Zooplankton entrainment at three mid-Atlantic power plants. Journal-Water Pollution Control Federation, 47(8): 2130–2142
    [9] Du Xiuning, Wang Yunlong, Chen Tao, et al. 2013. Seasonal variation of zooplankton copepod community in Xiangshan Bay of East China. Chinese Journal of Ecology (in Chinese), 32(10): 2756–2763
    [10] Du Xiuning, Wang Yunlong. 2014. Inter-annual and seasonal changes of zooplankton biomass and species in the specific region of the Xiangshan Bay. Marine Science Bulletin (in Chinese), 33(3): 293–298
    [11] Du Ping, Xu Xiaoqun, Liu Jingjing, et al. 2015. Spatial heterogeneity of macro-and meso-zooplankton in Xiangshan Bay in spring and summer. Acta Ecologica Sinica (in Chinese), 35(7): 2308–2321. doi: 10.5846/stxb201306091487
    [12] Du Ping, Xu Xiaoqun, Xu Xudan, et al. 2017. Effects of three different aquaculture activities on zooplankton community in Xiangshan Bay. Journal of Fisheries of China (in Chinese), 41(11): 1719–1733
    [13] Dussart B M. 1965. Les différentes catégories de plancton. Hydrobiologia, 26(1): 72–74. doi: 10.1007/BF00142255
    [14] Evans M S, Warren G J, Page D I. 1986. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook nuclear plant. Water Research, 20(6): 725–734. doi: 10.1016/0043-1354(86)90096-5
    [15] Gallienne C P, Robins D B. 2001. Is Oithona the most important copepod in the world’s oceans?. Journal of Plankton Research, 23(12): 1421–1432. doi: 10.1093/plankt/23.12.1421
    [16] Hwang J S, Kumar R, Dahms H U, et al. 2007. Mesh size affects abundance estimates of Oithona spp. (Copepoda, Cyclopoida). Crustaceana, 80(7): 827–837. doi: 10.1163/156854007781363169
    [17] Jiang Zhibing, Zeng Jiangning, Chen Quanzhen, et al. 2009. Potential impact of rising seawater temperature on copepods due to coastal power plants in subtropical areas. Journal of Experimental Marine Biology and Ecology, 368(2): 196–201. doi: 10.1016/j.jembe.2008.10.016
    [18] Jiang Zhibing, Chen Quanzhen, Zeng Jiangning, et al. 2012. Phytoplankton community distribution in relation to environmental parameters in three aquaculture systems in a Chinese subtropical eutrophic bay. Marine Ecology Progress Series, 446: 73–89. doi: 10.3354/meps09499
    [19] Jones K J, Gowen R J. 1990. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuarine, Coastal and Shelf Science, 30(6): 557–567. doi: 10.1016/0272-7714(90)90092-6
    [20] Laws E A, Falkowski P G, Smith Jr W O, et al. 2000. Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14(4): 1231–1246. doi: 10.1029/1999GB001229
    [21] Liu Zilin, Cai Yuming, Ning Xiuren. 1998. The distribution of chlorophyll a and primary productivity in the middle and west of Xiangshan Bay. Donghai Marine Science (in Chinese), 16(3): 18–24
    [22] Liu Zhensheng, Wang Chunsheng, Yang Junyi, et al. 2004. Distribution of zooplankton in the Xiangshangang Bay in winter. Donghai Marine Science (in Chinese), 22(1): 34–42
    [23] Lloyd P, Plagányi É E, Weeks S J, et al. 2011. Ocean warming alters species abundance patterns and increases species diversity in an African sub-tropical reef-fish community. Fisheries Oceanography, 21(1): 78–94. doi: 10.1111/j.1365-2419.2011.00610.x
    [24] Mäkinen K, Vuorinen I, Hänninen J. 2017. Climate-induced hydrography change favours small-bodied zooplankton in a coastal ecosystem. Hydrobiologia, 792(1): 83–96. doi: 10.1007/s10750-016-3046-6
    [25] Miao Qingsheng, Zhou Liangming, Deng Zhaoqing. 2010. Numerical simulation and in-situ measurement for heat discharge from Xiangshangang power plant Into Sea. Coastal Engineering, 29(4): 1–11
    [26] Nielsen T G, Sabatini M. 1996. Role of cyclopoid copepods Oithona spp. in North Sea plankton communities. Marine Ecology Progress Series, 139: 79–93. doi: 10.3354/meps139079
    [27] Pansera M, Granata A, Guglielmo L, et al. 2014. How does mesh-size selection reshape the description of zooplankton community structure in coastal lakes?. Estuarine, Coastal and Shelf Science, 151: 221–235. doi: 10.1016/j.ecss.2014.10.015
    [28] Porter K G. 1973. Selective grazing and differential digestion of algae by zooplankton. Nature, 244(5412): 179–180. doi: 10.1038/244179a0
    [29] Riccardi N. 2010. Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation. Journal of Limnology, 69(2): 287–296. doi: 10.4081/jlimnol.2010.287
    [30] Rice E, Dam H G, Stewart G. 2015. Impact of climate change on estuarine zooplankton: surface water warming in long island sound is associated with changes in copepod size and community structure. Estuaries and Coasts, 38(1): 13–23. doi: 10.1007/s12237-014-9770-0
    [31] Stabeno P J, Kachel N B, Moore S E, et al. 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 65–70: 31–45. doi: 10.1016/j.dsr2.2012.02.020
    [32] Şundri M I, Gomoiu M T. 2009. Qualitative and quantitative structure of zooplankton asociations in the Danube thermal discharge area of Nuclear Power Plant Cernavoda. Geoecomarina, 15: 123–130
    [33] Tseng L C, Dahms H U, Hung J J, et al. 2011. Can different mesh sizes affect the results of copepod community studies?. Journal of Experimental Marine Biology and Ecology, 398(1–2): 47–55. doi: 10.1016/j.jembe.2010.12.007
    [34] Tunowski J. 2009. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Pątnów power plants. Fisheries & Aquatic Life, 17(4): 279–289. doi: 10.2478/v10086-009-0020-1
    [35] Turner J T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43(2): 255–266
    [36] Vannucci M. 1968. Loss of organisms through the meshes. In: Tranter D J, ed. Zooplankton Sampling. UNESCO Monographs on Oceanographic Methodology. Paris: UNESCO Press, 77–86
    [37] Wang Chunsheng, Liu Zhensheng, He Dehuai. 2003. Seasonal dynamics of zooplankton biomass and abundance in Xiangshan Bay. Journal of Fisheries of China (in Chinese), 27(6): 595–599
    [38] Wang Xiaobo, Qiu Wusheng, Qin Mingli, et al. 2009. Studies on ecological community distribution of zooplankton in Xiangshan Bay. Marine Environmental Science (in Chinese), 28(1): 62–64
    [39] Wang Yangcai, Wu Xiongfei, Shi Huixiong, et al. 2011. Study on zooplankton communities near coastal power plants in Xiangshan Bay. Journal of Ningbo University (Natural Science & Engineering Edition) (in Chinese), 24(3): 5–10
    [40] Xu Zhaoli, Chen Yaqu. 1989. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea. Journal of Ecology (in Chinese), 8(4): 13–15
    [41] Yvon-Durocher G, Montoya J M, Trimmer M, et al. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17(4): 1681–1694. doi: 10.1111/j.1365-2486.2010.02321.x
    [42] Zheng Zhong, Li Song, Li Shaojing, et al. 1982. Pelagic Copepoda in China Seas (in Chinese). Shanghai: Shanghai Science and Technology Press, 1–162
    [43] Zheng Zhong, Li Shaojing, Xu Zhenzu, et al. 1984. Marine Planktology (in Chinese). Beijing: China Ocean Press, 1–653
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  82
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 录用日期:  2020-04-17
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回