Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018

Xiaowei Cao Peng Lu Ruibo Lei Qingkai Wang Zhijun Li

Xiaowei Cao, Peng Lu, Ruibo Lei, Qingkai Wang, Zhijun Li. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 25-37. doi: 10.1007/s13131-020-1645-6
Citation: Xiaowei Cao, Peng Lu, Ruibo Lei, Qingkai Wang, Zhijun Li. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 25-37. doi: 10.1007/s13131-020-1645-6

doi: 10.1007/s13131-020-1645-6

Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018

Funds: The National Key Research and Development Program of China under contract Nos 2017YFE0111400 and 2018YFA0605903; the National Natural Science Foundation of China under contract Nos 41922045, 41876213 and 51579024.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Locations of ice stations, monthly sea ice concentration from AMSR2 data in August 2018 and tracks of the ship.

    Figure  2.  Snow physical properties measurement by the snow fork.

    Figure  3.  Schematic diagram of the albedo measurement setup (a) and the photograph of the melt pond (S1) albedo measurement (b).

    Figure  4.  The effective measurement area of the reflected spectrum and the position where the melt pond was drilled.

    Figure  5.  Thin sections under natural light, polarized light, and the original sample for ice core collected in S6.

    Figure  6.  Textural structure of sea ice cores and thickness of snow at short-term stations.

    Figure  7.  Density, temperature, and salinity profiles against normalized depths of ice cores from short ice stations (temperature profile of S1 was not measured).

    Figure  8.  Profiles of the snow liquid water content and density at S2 and S4.

    Figure  9.  Photos of the melt pond surface.

    Figure  10.  The melt pond morphology and ice thickness under the melt pond of the S4 and S6.

    Figure  11.  The refreezing melt pond spectral and integrated (in brackets) albedo.

    Figure  12.  The snow cover spectral and integrated (in brackets) albedo.

    Figure  13.  Measurement positions of the physical properties of Arctic sea ice in the Pacific region over the past 10 years.

    Figure  14.  The average and standard deviation of the Arctic sea ice temperature (a), salinity (b) and density (c) in the past ten years (data collected by Lei et al., 2012a; Huang et al., 2013; Wang et al., 2018).

    Figure  15.  The Arctic sea ice albedo at different surface conditions, and the refreezing melt pond was the average and scope in this observation (the data of the new snow and autumn freeze up from Nicolaus et al. (2010a) and the melting snow, early seasonal melt pond and mature melt pond from Grenfell and Maykut (1977)).

    Table  1.   The observational contents of each short-term ice station

    StationDate and
    time (UTC)
    Physical propertiesAlbedo
    IceSnowMelt pondSnow
    S110 Aug. 23:00–3:00×××
    S212 Aug. 02:00–6:00
    S313 Aug. 02:00–05:00
    S414 Aug. 03:00–07:00
    S514 Aug. 23:00–05:00××
    S620 Aug. 07:00–12:00×
    S721 Aug. 09:30–13:30×××
    S823 Aug. 01:00–05:00××
    S924 Aug. 23:00–04:00
    Note: ○ means measurement, and × means “no”.
    下载: 导出CSV

    Table  2.   Snow physical properties over short-term ice station

    StationSnow thickness/mmAverage water
    content/%
    Average density/kg·m–3
    S2100 1.59307
    S3903.37218
    S4670.31185
    S9120 1.38254
    下载: 导出CSV

    Table  3.   The average thicknesses of the melt pond and snow

    StationMelt pond/cmSnow/cm
    HsHlHpHiHsHi
    S20 2.212.4 10.2
    S30 3.84.31176.0116
    S42.67.01.81602.5
    S53.53.96.11163.5127
    S60 5.511.9 1053.0
    S83.8180
    S905.726.8 1498.0168
    Note: – means no data.
    下载: 导出CSV

    Table  4.   Dates and positions of in-situ measurements of Arctic sea ice in the last 10 years

    YearDateIce station
    number
    Position
    Latitude (N)Longitude (W)
    200827 Aug.–2 Sep.579.9º–85.2º147.1º–162.8º
    201030 Jul.–23 Aug.777.5º–88.4º158.9º–177.2º
    201410 Aug.–28 Aug.876.7º–80.9º149.4º–163.1º
    20164 Aug.–20 Aug.776.3º–82.3º167.0º–179.6º
    201810 Aug.–24 Aug.979.2º–84.7º156.1º–169.4º
    下载: 导出CSV
  • [1] Aoki T, Hachikubo A, Hori M. 2003. Effects of snow physical parameters on shortwave broadband albedos. Journal of Geophysical Research, 108(D19): 4616. doi: 10.1029/2003JD003506
    [2] Berni J A J, Zarco-Tejada P J, Suarez L, et al. 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3): 722–738. doi: 10.1109/tgrs.2008.2010457
    [3] Cheng Bin, Zhang Zhanhai, Vihma T, et al. 2008. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data. Journal of Geophysical Research, 113(C9): C09020. doi: 10.1029/2007jc004654
    [4] Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176–1193. doi: 10.1175/JCLI-D-11-00113.1
    [5] Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the arctic sea ice cover. Geophysical Research Letters, 35(1): L01703. doi: 10.1029/2007gl031972
    [6] Curry J A, Schramm J L, Perovich D K, et al. 2001. Applications of sheba/fire data to evaluation of snow/ice albedo parameterizations. Journal of Geophysical Research, 106(D14): 15345–15355. doi: 10.1029/2000jd900311
    [7] Eicken H, Lensu M, Leppäranta M, et al. 1995. Thickness, structure, and properties of level summer multiyear ice in the Eurasian sector of the Arctic Ocean. Journal of Geophysical Research, 100(D11): 22697–22710. doi: 10.1029/95JC02188
    [8] Flocco D, Feltham D L, Bailey E, et al. 2015. The refreezing of melt ponds on Arctic sea ice. Journal of Geophysical Research, 120(2): 647–659. doi: 10.1002/2014JC010140
    [9] Galley R J, Trachtenberg M, Langlois A, et al. 2009. Observations of geophysical and dielectric properties and ground penetrating radar signatures for discrimination of snow, sea ice and freshwater ice thickness. Cold Regions Science and Technology, 57(1): 29–38. doi: 10.1016/j.coldregions.2009.01.003
    [10] Grenfell T C, Maykut G A. 1977. The optical properties of ice and snow in the Arctic Basin. Journal of Glaciology, 18(80): 445–463. doi: 10.3189/S0022143000021122
    [11] Grenfell T C, Perovich D K. 1984. Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. Journal of Geophysical Research, 89(C3): 3573–3580. doi: 10.1029/jc089ic03p03573
    [12] Han Hongwei, Li Zhijun, Huang Wenfeng, et al. 2015. The uniaxial compressive strength of the Arctic summer sea ice. Acta Oceanologica Sinica, 34(1): 129–136. doi: 10.1007/s13131-015-0598-7
    [13] Hohenegger C, Alali B, Steffen K R, et al. 2012. Transition in the fractal geometry of Arctic melt ponds. The Cryosphere, 6(5): 1157–1162. doi: 10.5194/tc-6-1157-2012
    [14] Honda M, Inoue J, Yamane S. 2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36(8): L08707. doi: 10.1029/2008GL037079
    [15] Huang Wenfeng, Lei Ruibo, Han Hongwei, et al. 2016. Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012. Cold Regions Science and Technology, 124: 127–137. doi: 10.1016/j.coldregions.2016.01.005
    [16] Huang Wenfeng, Lei Ruibo, Ilkka M, et al. 2013. The physical structures of snow and sea ice in the Arctic section of 150o-180oW during the summer of 2010. Acta Oceanologica Sinica, 32(5): 57–67. doi: 10.1007/s13131-013-0314-4
    [17] Johannessen O M, Bengtsson L, Miles M W, et al. 2004. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A: Dynamic Meteorology and Oceanography, 56(5): 559–560. doi: 10.3402/tellusa.v56i5.14599
    [18] Keilin D, Hartree E F. 1949. Effect of low temperature on the absorption spectra of haemoproteins; with observations on the absorption spectrum of oxygen. Nature, 164(4163): 254–259. doi: 10.1038/164254a0
    [19] Kwok R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
    [20] Lei Ruibo, Cheng Bin, Heil P, et al. 2018. Seasonal and interannual variations of sea ice mass balance from the central Arctic to the Greenland Sea. Journal of Geophysical Research, 123(4): 2422–2439. doi: 10.1002/2017jc013548
    [21] Lei Ruibo, Leppäranta M, Erm A, et al. 2011. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Estonian Journal of Earth Sciences, 60(1): 50–64. doi: 10.3176/earth.2011.1.05
    [22] Lei Ruibo, Li Zhijun, Li Na, et al. 2012a. Crucial physical characteristics of sea ice in the Arctic section of 143°-180°W during August and early September 2008. Acta Oceanologica Sinica, 31(4): 65–75. doi: 10.1007/s13131-012-0221-0
    [23] Lei Ruibo, Zhang Zhanhai, Matero I, et al. 2012b. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Research, 31(1): 17325. doi: 10.3402/polar.v31i0.17325
    [24] Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1): 269–283. doi: 10.5194/tc-9-269-2015
    [25] López-Moreno J I, Fassnacht S R, Heath J T, et al. 2013. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources, 55: 40–52. doi: 10.1016/j.advwatres.2012.08.010
    [26] Lu P, Cao X, Wang Q, et al. 2018a. Impact of a surface ice lid on the optical properties of melt ponds. Journal of Geophysical Research, 123(11): 8313–8328. doi: 10.1029/2018JC014161
    [27] Lu Peng, Cheng Bin, Leppäranta M, et al. 2018b. Partitioning of solar radiation in Arctic sea ice during melt season. Oceanologia, 60(4): 464–477. doi: 10.1016/j.oceano.2018.03.002
    [28] Lu Peng, Leppäranta M, Cheng Bin, et al. 2016. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance. Cold Regions Science and Technology, 124: 1–10. doi: 10.1016/j.coldregions.2015.12.010
    [29] Maykut G A, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76(6): 1550–1575. doi: 10.1029/JC076i006p01550
    [30] Martin S. 1979. A field study of brine drainage and oil entrainment in first-year sea ice. Journal of Glaciology, 22(88): 473–502. doi: 10.3189/S0022143000014477
    [31] Morassutti M P, Ledrew E F. 1996. Albedo and depth of melt ponds on sea-ice. International Journal of Climatology, 16(7): 817–838. doi: 10.1002/(sici)1097-0088(199607)16:7<817::aid-joc44>3.0.co;2-5
    [32] Mundy C J, Ehn J K, Barber D G, et al. 2007. Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. Journal of Geophysical Research, 112(C3): C03007. doi: 10.1029/2006JC003683
    [33] Nicolaus M, Gerland S, Hudson S R, et al. 2010a. Seasonality of spectral albedo and transmittance as observed in the Arctic transpolar drift in 2007. Journal of Geophysical Research, 115(C11): C11011. doi: 10.1029/2009JC006074
    [34] Nicolaus M, Hudson S R, Gerland S, et al. 2010b. A modern concept for autonomous and continuous measurements of spectral albedo and transmittance of sea ice. Cold Regions Science and Technology, 62(1): 14–28. doi: 10.1016/j.coldregions.2010.03.001
    [35] Nicolaus M, Katlein C, Maslanik J, et al. 2012. Changes in Arctic sea ice result in increasing light transmittance and absorption. Geophysical Research Letters, 39(24): L24501. doi: 10.1029/2012GL053738
    [36] Perovich D K. 1996. The optical properties of sea ice. Hanover: Cold Regions Research and Engineering Laboratory
    [37] Perovich D K, Grenfell T C, Light B, et al. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research, 107(C10): 8044. doi: 10.1029/2000JC000438
    [38] Perovich D K, Grenfell T C, Light B, et al. 2009. Transpolar observations of the morphological properties of Arctic sea ice. Journal of Geophysical Research, 114(C1): C00A04. doi: 10.1029/2008JC004892
    [39] Perovich D K, Polashenski C. 2012. Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39(8): L08501. doi: 10.1029/2012GL051432
    [40] Petrich C, Eicken H. 2009. Growth, structure and properties of sea ice. In: Thomas D N, Dieckmann G S, eds. Sea Ice. 2nd ed. Oxford: Wiley-Blackwell
    [41] Polashenski C, Perovich D, Courville Z. 2012. The mechanisms of sea ice melt pond formation and evolution. Journal of Geophysical Research, 117(C1): C01001. doi: 10.1029/2011JC007231
    [42] Renner A H H, Gerland S, Haas C, et al. 2014. Evidence of Arctic sea ice thinning from direct observations. Geophysical Research Letters, 41(14): 5029–5036. doi: 10.1002/2014GL060369
    [43] Stroeve J C, Kattsov V, Barrett A, et al. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39(16): L16502. doi: 10.1029/2012GL052676
    [44] Timco G W, Frederking R M W. 1996. A review of sea ice density. Cold Regions Science and Technology, 24(1): 1–6. doi: 10.1016/0165-232X(95)00007-X
    [45] Timco G W, Weeks W F. 2010. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60(2): 107–129. doi: 10.1016/j.coldregions.2009.10.003
    [46] Tucker III W B, Gow A J, Meese D A, et al. 1999. Physical characteristics of summer sea ice across the arctic ocean. Journal of Geophysical Research, 104(C1): 1489–1504. doi: 10.1029/98jc02607
    [47] Wang Qingkai, Li Zhijun, Lei Ruibo, et al. 2018. Estimation of the uniaxial compressive strength of Arctic sea ice during melt season. Cold Regions Science and Technology, 151: 9–18. doi: 10.1016/j.coldregions.2018.03.002
    [48] Webster M A, Rigor I G, Perovich D K, et al. 2015. Seasonal evolution of melt ponds on Arctic sea ice. Journal of Geophysical Research, 120(9): 5968–5982. doi: 10.1002/2015JC011030
    [49] Weeks W F, Ackley S F. 1986. The growth, structure, and properties of sea ice. In: Untersteiner N, ed. The Geophysics of Sea Ice. Boston, MA: Springer, 9–164, doi: 10.1007/978-1-4899-5352-0_2
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  82
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-22
  • 录用日期:  2020-01-02
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-09-25

目录

    /

    返回文章
    返回