Response of the upper ocean to tropical cyclone in the Northwest Pacific observed by gliders during fall 2018

Zekai Ni Jiancheng Yu Xuekun Shang Wenming Jin Yeteng Luo Philip A Vetter Huichang Jiang Liu Yu Sumin Liu Hongzhou Xu

Zekai Ni, Jiancheng Yu, Xuekun Shang, Wenming Jin, Yeteng Luo, Philip A Vetter, Huichang Jiang, Liu Yu, Sumin Liu, Hongzhou Xu. Response of the upper ocean to tropical cyclone in the Northwest Pacific observed by gliders during fall 2018[J]. Acta Oceanologica Sinica, 2021, 40(1): 103-112. doi: 10.1007/s13131-020-1672-3
Citation: Zekai Ni, Jiancheng Yu, Xuekun Shang, Wenming Jin, Yeteng Luo, Philip A Vetter, Huichang Jiang, Liu Yu, Sumin Liu, Hongzhou Xu. Response of the upper ocean to tropical cyclone in the Northwest Pacific observed by gliders during fall 2018[J]. Acta Oceanologica Sinica, 2021, 40(1): 103-112. doi: 10.1007/s13131-020-1672-3

doi: 10.1007/s13131-020-1672-3

Response of the upper ocean to tropical cyclone in the Northwest Pacific observed by gliders during fall 2018

Funds: The National Key R&D Program of China under contract No. 2018YFC0309800; the National Natural Science Foundation of China under contract Nos 41666001, 41576006, 41676015 and U1709202; the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA13030302; the Chinese Academy of Sciences Frontier Basic Research Project under contract No. QYJC201910.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The tracks of three TCs (a) and glider pathway during the cruise (b). In a, the colored dots illustrate the location and intensity level of TC, larger dots indicate every first point of a day and text above shows the date; rough ranges of 7th grade wind of each TCs when they are closest to the observed region are illustrated as translucent circles (only for TC level over TS); grey background indicates the topography. In b, the paths of Glider 1 and Glider 2 are marked with dotted and solid lines, respectively; profile locations are marked with circular or triangular markers whose color indicates the observation date.

    Figure  2.  Comparisons of averaged thermohalinic profiles from two gliders for the same period from September 15 to October 5. Variable σ0 is the potential density anomaly with respect to 1 000 kg/m3. Black and grey lines represent Glider 1 and Glider 2, respectively.

    Figure  3.  Satellite-observed sea surface temperature demonstrated by background color during the period. The tracks of TCs are shown as dotted lines with colored circles representing the intensity level (reference the color table in Fig. 1). The dates are shown in lower left corner of every graph.

    Figure  4.  Variables curves are from ERA5 or glider observation. For evaporation rate and latent heat flux, negative phases mean the direction is from ocean surface to the air. Shaded areas indicate when a TC was within 700 km of the observed region, and bold-dotted lines indicate the time when a TC is nearest.

    Figure  5.  Sequence of thermohalinic profiles during TC Mangkhut. Texts inside frame identify the gliders (G1 for Glider 1, G2 for Glider 2), dates and hours. Horizontal dotted lines indicate the MLD (in grey) or ILD (in blue, in case not equal to MLD).

    Figure  6.  Sequences of thermohalinic profiles during TC Trami. Texts inside frame identify the gliders (G1 for Glider 1, G2 for Glider 2), dates and hours. Horizontal dotted lines indicate the MLD (in grey) or ILD (in blue, in case not equal to MLD).

    Figure  7.  Sequences of thermohalinic profiles during TC Kong-Rey. Texts inside frame identify the gliders (G1 for Glider 1, G2 for Glider 2), dates and hours. Horizontal dotted lines indicate the MLD (in grey) or ILD (in blue, in case not equal to MLD).

  • [1] Balaguru K, Chang P, Saravanan R, et al. 2012. The barrier layer of the Atlantic warmpool: formation mechanism and influence on the mean climate. Tellus A: Dynamic Meteorology and Oceanography, 64(1): 18162. doi: 10.3402/tellusa.v64i0.18162
    [2] Bender M A, Ginis I, Kurihara Y. 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. Journal of Geophysical Research: Atmospheres, 98(D12): 23245–23263. doi: 10.1029/93JD02370
    [3] Bhaskar T V S U, Rahman S H, Pavan I D, et al. 2009. Comparison of AMSR-E and TMI sea surface temperature with Argo near-surface temperature over the Indian Ocean. International Journal of Remote Sensing, 30(10): 2669–2684. doi: 10.1080/01431160802555796
    [4] Carvalho F, Kohut J, Oliver M J, et al. 2017. Defining the ecologically relevant mixed-layer depth for Antarctica’s coastal seas. Geophysical Research Letters, 44(1): 338–345. doi: 10.1002/2016GL071205
    [5] Cione J J, Uhlhorn E W. 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Monthly Weather Review, 131(8): 1783–1496. doi: 10.1175//2562.1
    [6] Cronin M F, McPhaden M J. 2002. Barrier layer formation during westerly wind bursts. Journal of Geophysical Research: Oceans, 107(C12): SRF 21-1–SRF 21-12. doi: 10.1029/2001JC001171
    [7] Dare R A, McBride J L. 2011. Sea surface temperature response to tropical cyclones. Monthly Weather Review, 139(12): 3798–3808. doi: 10.1175/MWR-D-10-05019.1
    [8] D'Asaro E A, Sanford T B, Niiler P P, et al. 2007. Cold wake of hurricane Frances. Geophysical Research Letters, 34(15): L15609. doi: 10.1029/2007GL030160
    [9] Domingues R, Goni G, Bringas F, et al. 2015. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophysical Research Letters, 42(17): 7131–7138. doi: 10.1002/2015GL065378
    [10] Elsner J B, Liu K B. 2003. Examining the ENSO-typhoon hypothesis. Climate Research, 25(1): 43–54
    [11] Emanuel K. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. Journal of Geophysical Research: Atmospheres, 106(D14): 14771–14781. doi: 10.1029/2000JD900641
    [12] Emanuel K. 2003. Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31: 75–104. doi: 10.1146/annurev.earth.31.100901.141259
    [13] Emanuel K A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6): 585–605. doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
    [14] Ginis I. 2002. Tropical cyclone-ocean interactions. Advances in Fluid Mechanics, 33: 83–114
    [15] Guo Yipeng, Tan Zhemin. 2018. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño. Nature Communications, 9(1): 1507. doi: 10.1038/s41467-018-03945-y
    [16] Hart R E. 2011. An inverse relationship between aggregate northern hemisphere tropical cyclone activity and subsequent winter climate. Geophysical Research Letters, 38(1): L01705. doi: 10.1029/2010GL045612
    [17] Holte J, Talley L. 2009. A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation. Journal of Atmospheric and Oceanic Technology, 26(9): 1920–1939. doi: 10.1175/2009JTECHO543.1
    [18] Huang Peisheng, Sanford T B, Imberger J. 2009. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). Journal of Geophysical Research: Oceans, 114(C12): C12023. doi: 10.1029/2009JC005603
    [19] Jourdain N C, Lengaigne M, Vialard J, et al. 2013. Observation-based estimates of surface cooling inhibition by heavy rainfall under tropical cyclones. Journal of Physical Oceanography, 43(1): 205–221. doi: 10.1175/JPO-D-12-085.1
    [20] Kim E J, Kang S K, Jang S T, et al. 2010. Satellite-derived SST validation based on in-situ data during summer in the East China Sea and western North Pacific. Ocean Science Journal, 45(3): 159–170. doi: 10.1007/s12601-010-0014-3
    [21] Lin I, Liu W T, Wu C C, et al. 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30(13): 1718. doi: 10.1029/2003GL017141
    [22] Liu Zenghong, Xu Jianping, Sun Chaohui, et al. 2014. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanologica Sinica, 33(11): 90–101. doi: 10.1007/s13131-014-0558-7
    [23] Liu Zenghong, Xu Jianping, Zhu Bokang, et al. 2007. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chinese Journal of Oceanology and Limnology, 25(2): 123–131. doi: 10.1007/s00343-007-0123-8
    [24] Mei W, Lien C C, Lin I I, et al. 2015. Tropical cyclone-induced ocean response: A comparative study of the South China Sea and tropical northwest Pacific. Journal of Climate, 28(15): 5952–5968. doi: 10.1175/JCLI-D-14-00651.1
    [25] Meyers P C, Shay L K, Brewster J K, et al. 2016. Observed ocean thermal response to Hurricanes Gustav and Ike. Journal of Geophysical Research: Oceans, 121(1): 162–179. doi: 10.1002/2015JC010912
    [26] Pan Aijun, Wan Xiaofang, Chen Hangyu, et al. 2010. Diurnal evolution of the barrier layer and its local feedback in the central Taiwan Strait. Science China Earth Sciences, 53(2): 274–283. doi: 10.1007/s11430-009-0102-3
    [27] Pan Jiayi, Sun Yujuan. 2013. Estimate of ocean mixed layer deepening after a typhoon passage over the South China Sea by using satellite data. Journal of Physical Oceanography, 43(3): 498–506. doi: 10.1175/JPO-D-12-01.1
    [28] Park J J, Kwon Y O, Price J F. 2011. Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific. Journal of Geophysical Research: Oceans, 116(C12): C12025. doi: 10.1029/2011JC007165
    [29] Peng Shiqiu, Zhu Yuhang, Li Zhijin, et al. 2019. Improving the real-time marine forecasting of the northern South China Sea by assimilation of glider-observed T/S profiles. Scientific Reports, 9: 17845. doi: 10.1038/s41598-019-54241-8
    [30] Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153–175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [31] Qiu Chunhua, Huo Dan, Liu Changjian, et al. 2019a. Upper vertical structures and mixed layer depth in the shelf of the northern South China Sea. Continental Shelf Research, 174: 26–34. doi: 10.1016/j.csr.2019.01.004
    [32] Qiu Chunhua, Mao Huabin, Liu Hailong, et al. 2019b. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564. doi: 10.1029/2019JC015288
    [33] Qiu Chunhua, Mao Huabin, Wang Yanhui, et al. 2019c. An irregularly shaped warm eddy observed by Chinese underwater gliders. Journal of Oceanography, 75(2): 139–148. doi: 10.1007/s10872-018-0490-0
    [34] Qiu Chunhua, Mao Huabin, Yu Jiancheng, et al. 2015. Sea surface cooling in the Northern South China Sea observed using Chinese sea-wing underwater glider measurements. Deep Sea Research Part I: Oceanographic Research Papers, 105: 111–118. doi: 10.1016/j.dsr.2015.08.009
    [35] Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241
    [36] Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research: Oceans, 97(C5): 7305–7316. doi: 10.1029/92JC00407
    [37] Sriver R L, Huber M. 2007. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447(7144): 577–580. doi: 10.1038/nature05785
    [38] Steffen J, Bourassa M. 2018. Barrier layer development local to tropical cyclones based on argo float observations. Journal of Physical Oceanography, 48(9): 1951–1968. doi: 10.1175/JPO-D-17-0262.1
    [39] Sutherland G, Reverdin G, Marié L, et al. 2014. Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification. Geophysical Research Letters, 41(23): 8469–8476. doi: 10.1002/2014GL061939
    [40] Thomson R E, Fine I V. 2003. Estimating mixed layer depth from oceanic profile data. Journal of Atmospheric and Oceanic Technology, 20(2): 319–329. doi: 10.1175/1520-0426(2003)020<0319:EMLDFO>2.0.CO;2
    [41] Vincent E M, Lengaigne M, Madec G, et al. 2012a. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. Journal of Geophysical Research: Oceans, 117(C2): C02020. doi: 10.1029/2011JC007396
    [42] Vincent E M, Lengaigne M, Vialard J, et al. 2012b. Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. Journal of Geophysical Research: Oceans, 117(C5): C05023. doi: 10.1029/2011JC007705
    [43] Walker N D, Leben R R, Balasubramanian S. 2005. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophysical Research Letters, 32(18): L18610. doi: 10.1029/2005GL023716
    [44] Wang Xidong, Han Guijun, Qi Yiquan, et al. 2011. Impact of barrier layer on typhoon-induced sea surface cooling. Dynamics of Atmospheres and Oceans, 52(3): 367–385. doi: 10.1016/j.dynatmoce.2011.05.002
    [45] Wang Guihua, Wu Lingwei, Johnson N C, et al. 2016. Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophysical Research Letters, 43(14): 7632–7638. doi: 10.1002/2016GL069605
    [46] Wu Lingwei, Ling Zheng. 2015. Analysis of sea surface salinity response to typhoon in the Northwest Pacific based on Argo data. Journal of Marine Sciences (in Chinese), 33(3): 1–6
    [47] Yang Bing, Hou Yijun, Hu Po, et al. 2015. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 120(5): 3817–3836. doi: 10.1002/2015JC010783
    [48] Zhang Han, Chen Dake, Zhou Lei, et al. 2016. Upper ocean response to typhoon Kalmaegi (2014). Journal of Geophysical Research: Oceans, 121(8): 6520–6535. doi: 10.1002/2016JC012064
    [49] Zhang Zhixiang, Liu Lingling, Wang Fan. 2019. Oceanic barrier layer variation induced by tropical cyclones in the Northwest Pacific. Journal of Oceanology and Limnology, 37(2): 375–384. doi: 10.1007/s00343-019-8008-1
    [50] Zhang Han, Wu Renhao, Chen Dake, et al. 2018. Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014). Journal of Geophysical Research: Oceans, 123(10): 7154–7171. doi: 10.1029/2018JC014119
  • 加载中
图(7)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  53
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 录用日期:  2020-06-15
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回