Spatial structure of turbulent mixing of an anticyclonic mesoscale eddy in the northern South China Sea

Yongfeng Qi Chenjing Shang Huabin Mao Chunhua Qiu Changrong Liang Linghui Yu Jiancheng Yu Xiaodong Shang

Yongfeng Qi, Chenjing Shang, Huabin Mao, Chunhua Qiu, Changrong Liang, Linghui Yu, Jiancheng Yu, Xiaodong Shang. Spatial structure of turbulent mixing of an anticyclonic mesoscale eddy in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 69-81. doi: 10.1007/s13131-020-1676-z
Citation: Yongfeng Qi, Chenjing Shang, Huabin Mao, Chunhua Qiu, Changrong Liang, Linghui Yu, Jiancheng Yu, Xiaodong Shang. Spatial structure of turbulent mixing of an anticyclonic mesoscale eddy in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 69-81. doi: 10.1007/s13131-020-1676-z

doi: 10.1007/s13131-020-1676-z

Spatial structure of turbulent mixing of an anticyclonic mesoscale eddy in the northern South China Sea

Funds: The National Key R&D Plan of China under contract Nos 2017YFC0305904, 2017YFC0305804 and 2016YFC1401404; the National Natural Science Foundation of China under contract Nos 41876023, 41630970, 41806037, 41706137 and 41806033; the Guangdong Science and Technology Project under contract Nos 2019A1515111044, 2018A0303130047 and 2017A030310332; the Guangzhou Science and Technology Project under contract No. 201707020037; the Natural Science Foundation of Shenzhen University under contract No. 2019078; the Dedicated Fund for Promoting High-quality Economic Development in Guangdong Province (Marine Economic Development Project) under contract No. GDOE[2019]A03; the Independent Research Project Program of State Key Laboratory of Tropical Oceanography under contract Nos LTOZZ1902 and LTO1909.
More Information
    Corresponding author: E-mail: maohuabin@scsio.ac.cn
  • †These authors contributed equally to this works.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    †These authors contributed equally to this works.
  • Figure  1.  Trajectories of the anticyclonic eddy and underwater glider. a. Sea level anomaly (SLA) data for May 18, 2015. The red line indicates the track of the studied anticyclonic eddy. The black line shows the track of the underwater glider. The studied anticyclonic eddy is marked with a blue dashed line. The locations of the eddy center and glider on May 3, May 8, May 13, May 18, May 23, and May 28 are indicated. b. Absolute dynamic topography (ADT) on March 1, 2015. The red line indicates the track of the studied anticyclonic eddy. The yellow dash line in a and white dash line in b show an ADT of 118 cm. Bathymetry of the South China Sea with the 200 m, 1 000 m, 2 000 m and 3 000 m isobaths overlaid in a and b.

    Figure  2.  Mean T-S diagrams of water masses within and outside of the studied eddy (with the potential density of $ {\sigma }_{\theta } $ in kg/m3 contours overlaid). The blue, red, and yellow lines show data for the water forming the within eddy (115.5°–117°E), outside eddy left (114°–115.5°E), and outside eddy right (117°–118.5°E) sections, respectively. The black dashed line shows data for the Kuroshio Current water based on historical Argo T-S profiles within the black boxes of the inset figure.

    Figure  3.  Variations in the physical field of the studied anticyclonic eddy, including the eddy radius (a), rotational speed (b), and amplitude (c).

    Figure  4.  Vertical profiles of physical fields of the eddy. Potential temperature (a), salinity (b), potential density along the glider track (c), and baroclinic geostrophic velocity across the track (d). The white dashed lines indicate the eddy center derived from SLA data. The positive and negative values in d represent northward and southward velocities, respectively.

    Figure  5.  Estimates of GHP parameterization. a. 3D view of diffusivity, Kρ, along the glider track. The colors indicate SLA values on May 18, 2015; the black line shows the edge of the anticyclonic eddy, identified following Chelton et al. (2011); and the red dashed line indicates the eddy center. b. Averaged diffusivities by depth related to the eddy anterior side (blue) and posterior side (red). The dashed line indicates the averaged values. c. Variation in diffusivity by longitude. The vertical red and black dashed lines indicate the eddy center and edge, respectively.

    Figure  6.  An example of overturn identified at 19.86°N, 117.031°E in the northern SCS. a. Vertical profiles of potential temperature. b. An overturn detected from the original and sorted potential temperature profiles in the depth range indicated by the orange box in a.

    Figure  7.  The spatial pattern of diffusivity reconstructed by Thorpe-scale estimates.

    Figure  8.  Variation in diffusivity derived with Thorpe-scale method by longitude. The vertical red and black dashed lines indicate the eddy center and edge, respectively.

    Figure  9.  Comparison of eddy kinetic energy, diffusivity, and surface velocity. a. Eddy kinetic energy (EKE) corresponding to the moving path of the studied anticyclonic mesoscale eddy and the bin-averaged diffusivities by longitude. R2 is the linear fitting coefficient of determination. b. Bin-averaged surface velocity by longitude. The velocity was derived from HYCOM.

    Figure  10.  Fine structure shear variances derived from geostrophic velocities. a. Section display. b. Averaged shear variance in the posterior edge region (red), anterior edge region (blue), and the peripheral region (yellow).

    Figure  11.  Contour map of density anomalies δρ. The white line shows the core of the eddy. The anterior and posterior edges are marked with pink boxes.

    Figure  12.  Longitude-dependent standard deviation of the density anomaly between 60 m and 300 m.

  • [1] Alford M H, Peacock T, Mackinnon J M, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69. doi: 10.1038/nature14399
    [2] Bai Xiaolin, Liu Zhiyu, Zheng Quanan, et al. 2019. Fission of shoaling internal waves on the northeastern shelf of the South China Sea. Journal of Geophysical Research: Oceans, 124(7): 4529–4545. doi: 10.1029/2018JC014437
    [3] Booker J R, Bretherton F P. 1967. The critical layer for internal gravity waves in a shear flow. Journal of Fluid Mechanics, 27(3): 513–539. doi: 10.1017/S0022112067000515
    [4] Callaghan A H, Ward B, Vialard J. 2014. Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 94: 107–123. doi: 10.1016/j.dsr.2014.08.009
    [5] Capet X, McWilliams J, Molemaker M, et al. 2008. Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43. doi: 10.1175/2007JPO3671.1
    [6] Caruso M J, Gawarkiewicz G G, Beardsley R C. 2006. Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography, 62(4): 559–575. doi: 10.1007/s10872-006-0076-0
    [7] Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [8] Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Ocean, 116(C6): C06018
    [9] Chow C H, Hu J H, Centurioni L R, et al. 2008. Mesoscale Dongsha cyclonic eddy in the northern South China Sea by drifter and satellite observations. Journal of Geophysical Research: Ocean, 113(C4): C04018. doi: 10.1029/2007JC004542
    [10] Chu Xiaoqing, Xue Huijie, Qi Yiquan, et al. 2014. An exceptional anticyclonic eddy in the South China Sea in 2010. Journal of Geophysical Research: Oceans, 119(2): 881–897. doi: 10.1002/2013JC009314
    [11] Dillon T M. 1982. Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research: Oceans, 87(C12): 9601–9613. doi: 10.1029/JC087iC12p09601
    [12] Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41: 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
    [13] Fu L L, Ferrari R. 2008. Observing oceanic submesoscale processes from space. Eos, Transactions, American Geophysical Union, 89(48): 488. doi: 10.1029/2008EO480003
    [14] Garrett C, Munk W. 1972. Space-time scales of internal waves. Geophysical Fluid Dynamic, 3(3): 225–264. doi: 10.1080/03091927208236082
    [15] Garrett C, Munk W. 1975. Space-time scales of internal waves: A progress report. Journal of Geophysical Research, 80(3): 291–297. doi: 10.1029/JC080i003p00291
    [16] Gill A E, Green J S A, Simmons A J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Research and Oceanographic Abstracts, 21(7): 499–528. doi: 10.1016/0011-7471(74)90010-2
    [17] Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422(6931): 513–515. doi: 10.1038/nature01507
    [18] Guo Jingsong, Feng Ying, Yuan Yeli, et al. 2013. Kuroshio loop current intruding into the South China Sea and its shedding eddy. Oceanologia et Limnologia Sinica (in Chinese), 44(3): 537–544
    [19] He Qingyou, Zhan Haigang, Cai Shuqun, et al. 2018. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. Journal of Geophysical Research: Oceans, 123(7): 4906–4929. doi: 10.1029/2018JC014054
    [20] Henyey F S, Wright J, Flatté S M. 1986. Energy and action flow through the internal wave field: An eikonal approach. Journal of Geophysical Research: Oceans, 91(C7): 8487–8495. doi: 10.1029/JC091iC07p08487
    [21] Hu Jianyu, Zheng Quanan, Sun Zhenyu, et al. 2012. Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. Journal Geophysical Research: Oceans, 117(C3): C03010
    [22] Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6: 30041. doi: 10.1038/srep30041
    [23] Jia Yinglai, Chassignet E P. 2011. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. Journal of Oceanography, 67(5): 601–611. doi: 10.1007/s10872-011-0060-1
    [24] Jia Yinglai, Liu Qinyu, Liu Wei. 2004. Eddy shedding from the Kuroshio bend at Luzon Strait. Journal of Oceanography, 60(6): 1063–1069. doi: 10.1007/s10872-005-0014-6
    [25] Jing Zhao, Wu Lixin. 2013. Low-frequency modulation of turbulent diapycnal mixing by anticyclonic eddies inferred from the HOT time series. Journal of Physical Oceanography, 43(3): 824–835
    [26] Klymak J M, Alford M H, Pinkel R, et al. 2011. The breaking and scattering of the internal tide on a continental slope. Journal of Physical Oceanography, 41(5): 926–945. doi: 10.1175/2010JPO4500.1
    [27] Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36(8): 1553–1576. doi: 10.1175/JPO2926.1
    [28] Li Li, Nowlin W D Jr, Su Jilan. 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 45(9): 1469–1482. doi: 10.1016/S0967-0637(98)00026-0
    [29] Li Li, Pohlmann T. 2002. The South China Sea warm-core ring 94S and its influence on the distribution of chemical tracers. Ocean Dynamics, 52(3): 116–122. doi: 10.1007/s10236-001-0009-9
    [30] Liang Changrong, Chen Guiying, Shang Xiaodong. 2017. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dynamics, 67(5): 597–609. doi: 10.1007/s10236-017-1051-6
    [31] Liang Xinfeng, Thurnherr A M. 2011. Subinertial variability in the deep ocean near the East Pacific Rise between 9° and 10°N. Geophysical Research Letters, 38(6): L06606
    [32] Liu Zhiyu, Lian Qiang, Zhang Fangtao, et al. 2017. Weak thermocline mixing in the North Pacific low-latitude western boundary current system. Geophysical Research Letters, 44(20): 10530–10539. doi: 10.1002/2017GL075210
    [33] Mater B D, Venayagamoorthy S K, St Laurent L, et al. 2015. Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. Journal of Physical Oceanography, 45(10): 2497–2521. doi: 10.1175/JPO-D-14-0128.1
    [34] Nan Feng, Xue Huijie, Chai Fei, et al. 2011a. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61(9): 1291–1304. doi: 10.1007/s10236-011-0426-3
    [35] Nan Feng, Xue Huijie, Xiu Peng, et al. 2011b. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research: Oceans, 116(C12): C12045. doi: 10.1029/2011JC007386
    [36] Nan Feng, Xue Huijie, Yu Fei. 2015. Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 137: 314–333. doi: 10.1016/j.pocean.2014.05.012
    [37] Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Oceanography, 10(1): 83–89
    [38] Park J H, Farmer D. 2013. Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter. Journal of Geophysical Research: Oceans, 118(12): 7081–7094. doi: 10.1002/2013JC008983
    [39] Polzin K L, Garabato A C N, Huussen T N, et al. 2014. Finescale parameterizations of turbulent dissipation. Journal of Geophysical Research: Oceans, 119(2): 1383–1419. doi: 10.1002/2013JC008979
    [40] Qiu Chunhua, Mao Huabin, Liu Hailong, et al. 2019a. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564. doi: 10.1029/2019JC015288
    [41] Qiu Chunhua, Mao Huabin, Wang Yanhui, et al. 2019b. An irregularly shaped warm eddy observed by Chinese underwater gliders. Journal of Oceanography, 75(2): 139–148. doi: 10.1007/s10872-018-0490-0
    [42] Qu Tangdong. 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 30(6): 1450–1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
    [43] Qu Tangdong, Girton J B, Whitehead J A. 2006. Deepwater overflow through Luzon Strait. Journal of Geophysical Research: Oceans, 111(C1): C01002
    [44] Shang Xiaodong, Liang Changrong, Chen Guiying. 2017. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Science, 13(3): 503–519. doi: 10.5194/os-13-503-2017
    [45] Shay T J, Gregg M C. 1986. Convectively driven turbulent mixing in the upper ocean. Journal of Physical Oceanography, 16(11): 1777–1798. doi: 10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2
    [46] St. Laurent L 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35(23): L23615. doi: 10.1029/2008GL035520
    [47] Su Zhan, Ingersoll A P, Stewart A, et al. 2016. Ocean convective available potential energy. Part II: Energetics of thermobaric convection and thermobaric cabbeling. Journal of the Physical Oceanography, 46(4): 1097–1115. doi: 10.1175/JPO-D-14-0156.1
    [48] Sun Hui, Yang Qingxuan, Zhao Wei, et al. 2016. Temporal variability of diapycnal mixing in the northern South China Sea. Journal of Geophysical Research: Oceans, 121(12): 8840–8848. doi: 10.1002/2016JC012044
    [49] Thomas L, Ferrari R. 2008. Friction, frontogenesis, and the stratification of the surface mixed layer. Journal of Physical Oceanography, 38(11): 2501–2518. doi: 10.1175/2008JPO3797.1
    [50] Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12): 3191–3203. doi: 10.1175/2009JPO3899.1
    [51] Wang Xiaowei, Peng Shiqiu, Liu Zhiyu, et al. 2016. Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. Journal of Physical Oceanography, 46(1): 107–124. doi: 10.1175/JPO-D-15-0082.1
    [52] Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
    [53] Wang Guihua, Su Jilan, Qi Yiquan. 2005. Advances in studying mesoscale eddies in South China Sea. Advance in Earth Science, 20(8): 882–886
    [54] Wang Guihua, Xie Shangping, Qu Tangdong, et al. 2011. Deep South China Sea circulation. Geophysical Research Letters, 38(5): L05601
    [55] Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935. doi: 10.1007/s10872-008-0076-3
    [56] Wang Qiang, Zeng Lili, Li Jian, et al. 2018. Observed cross-shelf flow induced by mesoscale eddies in the northern South China Sea. Journal of Physical Oceanography, 48(7): 1609–1628. doi: 10.1175/JPO-D-17-0180.1
    [57] Xie Jieshuo, He Yinghui, Chen Zhiwu, et al. 2015. Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea. Journal of Physical Oceanography, 45(12): 2959–2978. doi: 10.1175/JPO-D-15-0029.1
    [58] Xie Shangping, Xie Qiang, Wang Dongxiao, et al. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research: Oceans, 108(C8): 3261. doi: 10.1029/2003JC001867
    [59] Yang Haijun, Liu Qinyu. 2003. Forced Rossby wave in the northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 50(7): 917–926. doi: 10.1016/S0967-0637(03)00074-8
    [60] Yang Qingxuan, Nikurashin M, Sasaki H, et al. 2019. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Scientific Reports, 9: 556. doi: 10.1038/s41598-018-36610-x
    [61] Yang Qingxuan, Zhou Lei, Tian Jiwei, et al. 2014. The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea. Journal of Coastal Research, 30(1): 192–198
    [62] Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2016. Three-dimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46(3): 769–788. doi: 10.1175/JPO-D-14-0220.1
    [63] Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    [64] Yuan Dongliang, Han Weiqing, Hu Dunxin. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11): C11007. doi: 10.1029/2005JC003412
    [65] Yuan Dongliang, Han Weiqing, Hu Dunxin. 2007. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophysical Research Letters, 34(13): L13610
    [66] Zhang Huaimin, Bates J J, Reynolds R W. 2006. Assessment of composite global sampling: Sea surface wind speed. Geophysical Research Letters, 33(17): L17714. doi: 10.1029/2006GL027086
    [67] Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    [68] Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
    [69] Zhang Zhiwei, Zhao Wei, Qiu Bo, et al. 2017. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal Physical Oceanography, 47(6): 1243–1259. doi: 10.1175/JPO-D-16-0185.1
    [70] Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal Geophysical Research: Oceans, 118(12): 6479–6494. doi: 10.1002/2013JC008994
    [71] Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Ocean, 119(8): 5434–5448. doi: 10.1002/2014JC010014
    [72] Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters, 31(6): L06302
    [73] Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. 2017. Progress in research of mesoscale eddies in the South China Sea. Advances in Marine Science, 35(2): 131–158
    [74] Zhou Chun, Zhao Wei, Tian Jiwei, et al. 2014. Variability of the deep-water overflow in the Luzon Strait. Journal of Physical Oceanography, 44(11): 2972–2986. doi: 10.1175/JPO-D-14-0113.1
  • 加载中
图(12)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  96
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2020-08-10
  • 网络出版日期:  2020-12-28
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回