Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods

Tingting Qin Tong Jia Qian Feng Xiaoming Li

Tingting Qin, Tong Jia, Qian Feng, Xiaoming Li. Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods[J]. Acta Oceanologica Sinica, 2021, 40(1): 13-21. doi: 10.1007/s13131-020-1682-1
Citation: Tingting Qin, Tong Jia, Qian Feng, Xiaoming Li. Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods[J]. Acta Oceanologica Sinica, 2021, 40(1): 13-21. doi: 10.1007/s13131-020-1682-1

doi: 10.1007/s13131-020-1682-1

Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods

Funds: The National Key Research and Development Program under contract Nos 2016YFC1402703 and 2018YFC1407100.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographical locations of the Sentinel-1 and buoy data in this study.

    Figure  2.  The calculated radiometric resolution as a function of cell sizes based on a dataset of 2 277 scenes of Sentinel-1 HH polarization data.

    Figure  3.  The structure of three-layer BP neural network.

    Figure  4.  Comparisons of the retrieved SSWS using the PR models of Mouche-PR1 (a), Mouche-PR2 (b), Zhang-PR (c) and Liu-PR (d) and CMODH (e) model with the collocated buoy wind speeds.

    Figure  5.  Comparisons of the retrieved SSWS using the PR models of Mouche-PR1 (a), Mouche-PR2 (b), Zhang-PR (c) and Liu-PR (d) and CMODH model (e) with the collocated ASCAT wind speeds.

    Figure  6.  Comparisons of the retrieved SSWS using the training set of BP neural network (a), the test set of BP neural network (b) and the trained optimal BP neural network (c) models with the collocated ASCAT and buoy wind speeds.

    Figure  7.  An example of SSWS retrieval for Sentinel-1 HH polarization data using Mouche-PR1 model (a), Mouche-PR2 model (b), Zhang-PR model (c), Liu-PR model (d), CMODH model (e), and BP neural network model (f). The collocated ERA5 wind vectors within the coverage of the Sentinel-1 image are overlaid. The red pentagram marks the location of the R/V Xuelong.

    Table  1.   Technical specifications of Sentinel-1 IW and EW modes

    ModeIncidence angle/(°)Nominal resolutionSwath width/kmPolarization
    IW29–46 5 m×20 m250HH+HV, HH, VH+VV, VV
    EW19–4725 m×40 m400HH+HV, HH, VH+VV, VV
    下载: 导出CSV

    Table  2.   Information table of buoy data used in this study

    StationLatitudeLongitudeHeight/mStationLatitudeLongitudeHeight/m
    4602240.720°N124.531°W44604732.398°N119.498°W5
    4601439.233°N123.967°W44602946.143°N124.485°W5
    4601338.238°N123.307°W44604147.353°N124.742°W5
    4601542.779°N124.874°W45100319.289°N160.569°W5
    4605044.677°N124.515°W45100023.535°N153.781°W5
    4609236.751°N122.029°W44425844.500°N63.400°W5
    4602533.749°N119.053°W44513849.540°N65.710°W5
    5100417.602°N152.395°W4SMKF124.628°N81.109°W6.1
    323035.000°N95.000°W4VCAF124.711°N81.107°W6.5
    433018.000°N95.000°W4NPSF126.132°N81.807°W6.5
    5100217.037°N157.696°W4MTBF127.661°N82.594°W6.7
    4603557.026°N177.738°W5LONF124.844°N80.864°W7
    4602741.852°N124.382°W5VCVA257.125°N170.285°W8.5
    4608945.925°N125.771°W5CDRF129.136°N83.029°W10
    4601134.956°N121.019°W5VENF127.072°N82.453°W11.6
    4602835.712°N121.858°W5SANF124.456°N81.877°W14.6
    4604236.785°N122.398°W5MLRF125.012°N80.376°W15.8
    4606933.674°N120.212°W5PLSF124.693°N82.773°W17.7
    4608632.491°N118.035°W5
    下载: 导出CSV

    Table  3.   Coefficients of Mouche-PR1 model

    CoefficientValue
    A00.006 507 04
    B00.128 983 00
    C00.992 839 00
    Aπ/20.007 821 94
    Bπ/20.121 405 00
    Cπ/20.992 839 00
    Aπ0.005 984 16
    Bπ0.140 952 00
    Cπ0.992 885 00
    下载: 导出CSV

    Table  4.   Coefficients of PR model with incidence angle dependence

    PR modelABC
    Mouche-PR20.007997930.1254650.997379
    Zhang-PR0.282 80.045 10.289 1
    Liu-PR0.453 041 00.03245730.5243030
    下载: 导出CSV

    Table  5.   Statistical parameters of SSWS retrieval using different methods

    ModelsBias/(m·s–1)RMSE/(m·s–1)SI/%
    Compared with buoyMouche-PR10.111.6022.89
    Mouche-PR20.131.6323.42
    Zhang-PR–0.33 1.5021.09
    Liu-PR0.251.7825.36
    CMODH–0.31 1.4820.89
    BPNN0.101.3819.85
    Compared with ASCATMouche-PR10.271.5717.73
    Mouche-PR20.411.7018.85
    Zhang-PR–0.09 1.4016.26
    Liu-PR0.912.5226.86
    CMODH–0.35 1.3915.82
    BPNN (training set)0.031.3315.39
    BPNN (test set)–0.01 1.3315.10
    下载: 导出CSV
  • [1] Bentamy A, Croize-Fillon D, Perigaud C. 2008. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Science, 4(4): 265–274. doi: 10.5194/os-4-265-2008
    [2] Elfouhaily T. 1996. Physical modeling of electromagnetic backscatter from the ocean surface; application to retrieval of wind fields and wind stress by remote sensing of the marine atmospheric boundary layer [dissertation]. Paris: University Paris VII
    [3] ESA (European Space Agency). 2016. Sentinel-1 product specification. https://sentinel.esa.int/web/sentinel/document-library/content/-/article/sentinel-1-product-specification, [2020-2-17]
    [4] Hersbach H. 2010. Comparison of C-band scatterometer CMOD5. N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27(4): 721–736. doi: 10.1175/2009JTECHO698.1
    [5] Hersbach H, Stoffelen A, de Haan S. 2007. An improved C‐band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research, 112(C3): C03006
    [6] Horstmann J, Schiller H, Schulz-Stellenfleth J, et al. 2003. Global wind speed retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2277–2286. doi: 10.1109/TGRS.2003.814658
    [7] Komarov A S, Buehner M. 2017. Automated detection of ice and open water from dual-polarization RADARSAT-2 images for data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 55(10): 5755–5769. doi: 10.1109/TGRS.2017.2713987
    [8] Liu Guihong, Yang Xiaofeng, Li Xiaofeng, et al. 2013. A systematic comparison of the effect of polarization ratio models on sea surface wind retrieval from C-band synthetic aperture radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3): 1100–1108. doi: 10.1109/JSTARS.2013.2242848
    [9] Monaldo F M, Thompson D R, Pichel W G, et al. 2004. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Transactions on Geoscience and Remote Sensing, 42(2): 283–291. doi: 10.1109/TGRS.2003.817213
    [10] Moreira A. 1991. Improved multi-look techniques applied to SAR and Scan SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 29(4): 529–534. doi: 10.1109/36.135814
    [11] Mouche A A, Hauser D, Daloze J F, et al. 2005. Dual-polarization measurements at C-band over the ocean: results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 43(4): 753–769. doi: 10.1109/TGRS.2005.843951
    [12] Olivier P, Vidal-Madjar D. 1994. Empirical estimation of the ERS-1 SAR radiometric resolution. International Journal of Remote Sensing, 15(5): 1109–1114. doi: 10.1080/01431169408954144
    [13] Peixoto J P, Oort A H. 1992. Physics of Climate. New York: American Institute of Physics, 67
    [14] Pierson Jr W J. 1990. Examples of, reasons for, and consequences of the poor quality of wind data from ships for the marine boundary layer: Implications for remote sensing. Journal of Geophysical Research, 95(C8): 13313–13340. doi: 10.1029/JC095iC08p13313
    [15] Pond S, Pickard G L. 1983. Currents with friction; wind-driven circulation. In: Pond S, Pickard G, eds. Introductory Dynamical Oceanography. 2nd ed. Amsterdam: Elsevier, 100–162
    [16] Quilfen Y, Chapron B, Elfouhaily T, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research, 103(C4): 7767–7786. doi: 10.1029/97JC01911
    [17] Richaume P, Badran F, Crepon M, et al. 2000. Neural network wind retrieval from ERS-1 scatterometer data. Journal of Geophysical Research, 105(C4): 8737–8751. doi: 10.1029/1999JC900225
    [18] Schwerdt M, Schmidt K, Tous Ramon N, et al. 2014. Independent verification of the Sentinel-1A system calibration. In: Proceedings of 2014 Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE
    [19] Stoffelen A, Anderson D. 1997. Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. Journal of Geophysical Research, 102(C3): 5767–5780. doi: 10.1029/96JC02860
    [20] Thiria S, Mejia C, Badran F, et al. 1993. A neural network approach for modeling nonlinear transfer functions: application for wind retrieval from spaceborne scatterometer data. Journal of Geophysical Research, 98(C12): 22827–22841. doi: 10.1029/93JC01815
    [21] Wang Lihua, Lu Peng, Ma Jiapei. 2017. Deriving sea surface wind from synthetic aperture radar based on Fourier transform and neural network. In: Proceedings of the 10th International Congress on Image and Signal Processing. Shanghai: IEEE, 1–6
    [22] Yang Yonghong. 2009. Introduction to Synthetic Aperture Radar Ocean Remote Sensing (in Chinese). Beijing: China Ocean Press
    [23] Zhang Biao, Mouche A, Lu Yiru, et al. 2019. A geophysical model function for wind speed retrieval from C-band HH-polarized synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 16(10): 1521–1525. doi: 10.1109/LGRS.2019.2905578
    [24] Zhang Biao, Perrie W, He Yijun. 2011. Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. Journal of Geophysical Research, 116(C8): C08008
    [25] Zhang Biao, Perrie W, Hwang P A, et al. 2010. A new polarization ratio model from C-band RADARSAT-2 fine Quad-Pol imagery. In: Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 1948–1951
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  70
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 录用日期:  2020-05-26
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回