Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data

Yanguang Fu Yikai Feng Dongxu Zhou Xinghua Zhou Jie Li Qiuhua Tang

Yanguang Fu, Yikai Feng, Dongxu Zhou, Xinghua Zhou, Jie Li, Qiuhua Tang. Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data[J]. Acta Oceanologica Sinica, 2020, 39(12): 1-10. doi: 10.1007/s13131-020-1685-y
Citation: Yanguang Fu, Yikai Feng, Dongxu Zhou, Xinghua Zhou, Jie Li, Qiuhua Tang. Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data[J]. Acta Oceanologica Sinica, 2020, 39(12): 1-10. doi: 10.1007/s13131-020-1685-y

doi: 10.1007/s13131-020-1685-y

Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data

Funds: The National Key Research and Development Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703; the National Natural Science Foundation of China under contract Nos 41876111, 41706115 and 41806214.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Distribution of satellite altimetry along-track points and tide gauge stations in the study area. The numbered dark triangles denote the 37 tide gauges. Gray solid and dashed lines are the primary and interleaved mission tracks, respectively.

    Figure  2.  Satellite-derived amplitude (a) and phase (b) of O1 tidal constituents.

    Figure  3.  Satellite-derived amplitude (a) and phase (b) of K1 tidal constituents.

    Figure  4.  Satellite-derived amplitude (a) and phase (b) of M2 tidal constituents.

    Figure  5.  Satellite-derived amplitude (a) and phase (b) of S2 tidal constituents.

    Figure  6.  Spatial distribution of RMS value for the M2 tidal constituent.

    Figure  7.  Comparisons between predictions of each tide model and tide gauge observations.

    Figure  8.  Histograms of RMS values in M2 between the 84 tide gauge stations and FES2014 and HAMTIDE12. Overall, 54.76% (FES 2014) and 44.05% (HAMTIDE12) of stations agreed with the corresponding model to accuracy better than 3 cm.

    Table  1.   The geographical coordinates, time range, amplitude and phase of the four major tidal constituents of the tide gauge stations located in the South China Sea

    Station No.NameGeographic coordinateTime coverageK1O1M2S2
    Amplitude/cmPhase/(°)Amplitude/cmPhase/(°)Amplitude/cmPhase/(°)Amplitude/cmPhase/(°)
    1Pingtan25.47°N, 119.83°E2010–201230.41131.1924.7199.99205.3278.0562.52113.20
    2Chongwu24.88°N, 118.95°E2010–201232.20148.6726.29115.70206.0597.9361.41137.41
    3Xiamen24.45°N, 118.07°E1954–199734.16163.6227.84122.47184.80120.1054.01163.41
    4Nanao23.40°N, 117.10°E2010–201230.24169.4424.94131.1556.44130.5913.90187.35
    5Shantou23.22°N, 116.78°E2010–201229.70170.5424.62131.3533.71129.786.75198.40
    6Shanwei22.77°N, 115.37°E2010–201232.56177.0726.47137.8027.1626.7210.5438.08
    7Kaohsiung22.62°N, 120.28°E1983–201317.69165.8615.99129.5418.14350.666.71350.90
    8Hong Kong22.30°N, 114.22°E1986–201235.32166.9628.08121.9439.507.9115.7327.55
    9Macau22.17°N, 113.55°E1978–198537.64186.9730.56146.1846.3656.0418.6581.29
    10Zhapo21.58°N, 111.83°E1975–199741.51195.0435.13149.0964.4361.6127.9992.55
    11Beihai21.47°N, 109.05°E2010–201290.67336.1498.36281.5345.47306.4111.05357.97
    12Weizhou21.02°N, 109.12°E2010–201286.48333.6094.59279.1838.84300.599.80354.40
    13Hon Dau20.67°N, 106.82°E1960–196070.4992.4278.4028.405.8740.884.40104.39
    14Haian20.23°N, 110.13°E2010–201244.26329.6653.67276.3716.3517.2811.1879.36
    15Haikou20.02°N, 110.28°E1976–199737.32335.6244.48281.8322.5026.6912.9481.45
    16Dongfanggang19.11°N, 108.63°E2010–201254.25311.6463.59259.5018.01190.265.71239.50
    17Sanya18.23°N, 109.50°E2010–201231.16209.5929.49173.2121.5688.747.15121.54
    18Vung Ang18.08°N, 106.28°E1996–199732.6298.1340.4831.0524.70353.506.5962.79
    19Manila14.58°N, 120.97°E1984–201232.95198.1628.87153.3819.7563.847.2995.31
    20Qui Nohn13.77°N, 109.25°E1994–200532.77192.8127.55153.0317.7285.426.97120.66
    21Ko Lak11.80°N, 99.82°E1985–201251.6259.4833.5317.816.44291.481.51339.18
    22Vung Tau10.33°N, 107.07°E1986–200263.78207.3450.34166.5075.39194.8929.46231.06
    23Puerto Princesa9.75°N, 118.73°E1998–201234.21204.8829.88167.8129.9279.7815.99113.35
    24Langkawi6.43°N, 99.77°E1985–201216.70232.405.19183.5580.12118.2844.48155.80
    25Geting6.23°N, 102.10°E1986–201123.81233.3612.29190.0616.9820.218.1150.96
    26Kota Kinabalu5.98°N, 116.07°E1987–201134.78194.5330.07152.8223.5988.3610.20115.43
    27Penang5.42°N, 100.35°E1984–201119.56237.205.08177.4561.26152.2936.13185.91
    28Cendering5.27°N, 103.18°E1984–201148.07238.4129.50209.6130.095.9812.0242.85
    29Miri4.40°N, 113.97°E1992–201135.84194.5231.35154.1517.81101.458.68123.43
    30Lumut4.23°N, 100.62°E1984–201121.61246.333.19159.2274.47241.5134.95275.77
    31Kuantan3.98°N, 103.43°E1983–201152.04254.4034.81218.1752.5729.8617.3368.75
    32Bintulu3.22°N, 113.07°E1992–201139.80198.5732.18160.9519.04182.126.02165.73
    33Kelang3.05°N, 101.37°E1983–201119.42264.683.5048.94137.63284.3869.07325.67
    34Tioman2.80°N, 104.13°E1985–201146.14264.2334.56231.2559.1640.8018.4383.16
    35Keling2.22°N, 102.15°E1984–20119.0829.9420.9934.1361.13356.1129.8635.40
    36Sedili1.93°N, 104.12°E1986–201133.28286.0128.22253.6556.2259.3516.06107.42
    37Tanjong Pagar1.27°N, 103.85°E1988–201130.61350.4629.68306.0279.3291.8432.14138.38
    Note: Column 1 is the tide gauge number used corresponding to the location in Fig. 1.
    下载: 导出CSV

    Table  2.   Main properties of the seven ocean tide models under review

    Tide modelsResolutionMajor constituentsType
    DiurnalSemidiurnal
    DTU10(1/8)°×(1/8)°K1, O1, P1, Q1, S1M2, S2, N2, K2E
    EOT11a(1/8)°×(1/8)°K1, O1, P1, Q1, S1M2, S2, N2, K2, 2N2E
    FES2014(1/16)°×(1/16)°K1, O1, P1, Q1, S1M2, S2, N2, K2, 2N2H
    GOT4.8(1/2)°×(1/2)°K1, O1, P1, Q1, S1M2, S2, N2, K2E
    HAMTIDE12(1/8)°×(1/8)°K1, O1, P1, Q1M2, S2, N2, K2H
    OSU12(1/4)°×(1/4)°K1, O1, P1, Q1, S1M2, S2, N2, K2E
    TPXO8(1/30)°×(1/30)°K1, O1, P1, Q1, S1M2, S2, N2, K2H
    Note: E, empirical adjustment to an adopted prior model; H, assimilation into a barotropic hydrodynamic model.
    下载: 导出CSV

    Table  3.   RMS values between the tide models of the South China Sea and their RSS values

    Water depthPoints numberRMS/cmRSS/cm
    Q1O1P1K1N2M2S2K2
    83760.972.191.393.081.284.142.291.116.51
    <200 m40271.182.871.724.141.635.633.091.398.69
    >200 m43490.721.260.991.550.841.901.130.783.42
    下载: 导出CSV

    Table  4.   Comparison of satellite results and tide models in shallow-water areas

    Tide modelRMS/cmRSS/cm
    Q1O1P1K1N2M2S2K2
    DTU100.911.751.562.161.231.901.481.164.43
    EOT11a0.932.271.663.891.434.222.531.197.18
    FES20140.921.221.321.821.102.421.391.034.18
    GOT4.81.273.652.115.152.336.513.721.6310.50
    HAMTIDE121.083.071.633.671.595.844.151.619.12
    OSU121.482.941.794.161.654.223.081.437.96
    TPXO81.451.751.572.311.433.822.591.236.15
    Note: Bold values represent the best performance in terms of accuracy.
    下载: 导出CSV

    Table  5.   RMS and RSS values between the models and the 37 tide gauge stations

    Tide modelRMS/cmRSS/cm
    Q1O1P1K1N2M2S2K2
    DTU101.527.122.325.961.97 9.925.421.9015.14
    EOT11a0.953.591.474.202.7710.116.072.1213.59
    FES20141.044.082.143.961.46 6.132.791.42 9.35
    GOT4.81.305.892.116.022.7011.994.792.2916.01
    HAMTIDE121.387.441.666.124.7813.307.453.5319.11
    OSU121.465.581.664.894.28 8.195.362.4113.41
    TPXO81.235.361.913.823.1614.607.412.6218.26
    下载: 导出CSV
  • [1] Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. In: National Oceanic and Atmospheric Administration. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado: National Geophysical Data Center, NOAA, 1–19, doi: 10.7289/V5C8276M
    [2] Andersen O B, Woodworth P L, Flather R A. 1995. Intercomparison of recent ocean tide models. Journal of Geophysical Research: Oceans, 100(C12): 25261–25282. doi: 10.1029/95JC02642
    [3] Carrere L, Lyard F, Cancet M, et al. 2015. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In: EGU General Assembly 2015. Vienna, Austria: EGU
    [4] Chen Ming, Murali K, Khoo B C, et al. 2005. Circulation modelling in the strait of Singapore. Journal of Coastal Research, 21(5): 960–972
    [5] Cheng Yongcun, Andersen O B. 2011. Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans, 116(C11): C11001. doi: 10.1029/2011JC007172
    [6] Cheng Yongcun, Xu Qing, Zhang Yuan. 2016. Tidal estimation from TOPEX/Poseidon, Jason primary, and Interleaved missions in the Bohai, Yellow, and East China seas. Journal of Coastal Research, 32(4): 966–973. doi: 10.2112/JCOASTRES-D-14-00209.1
    [7] Cherniawsky J Y, Foreman M G G, Crawford W R, et al. 2001. Ocean tides from TOPEX/Poseidon sea level data. Journal of Atmospheric and Oceanic Technology, 18(4): 649–664. doi: 10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2
    [8] Daher V B, de Oliveira Vieira Paes R C, França G B, et al. 2015. Extraction of tide constituents by harmonic analysis using altimetry satellite data in the Brazilian coast. Journal of Atmospheric and Oceanic Technology, 32(3): 614–626. doi: 10.1175/JTECH-D-14-00091.1
    [9] Desportes E, Obligis E, Eymard L. 2007. On the wet tropospheric correction for altimetry in coastal regions. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2139–2149. doi: 10.1109/TGRS.2006.888967
    [10] Dorandeu J, Le Traon P Y. 1999. Effects of global mean atmospheric pressure variations on mean sea level changes from TOPEX/Poseidon. Journal of Atmospheric and Oceanic Technology, 16(9): 1279–1283. doi: 10.1175/1520-0426(1999)016<1279:EOGMAP>2.0.CO;2
    [11] Egbert G D, Bennett A F, Foreman M G G. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12): 24821–24852. doi: 10.1029/94JC01894
    [12] Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [13] Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778. doi: 10.1038/35015531
    [14] Fang Guohong. 1986. Tide and tidal current charts for the marginal seas adjacent to China. Chinese Journal of Oceanology and Limnology, 4(1): 1–16. doi: 10.1007/BF02850393
    [15] Fang Guohong, Kwok Y K, Yu Kejun, et al. 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19(7): 845–869. doi: 10.1016/S0278-4343(99)00002-3
    [16] Fok H S, Iz H B, Shum C K, et al. 2010. Evaluation of ocean tide models used for Jason-2 altimetry corrections. Marine Geodesy, 33(S1): 285–303. doi: 10.1080/01490419.2010.491027
    [17] Fok H S. 2012. Ocean tides modeling using satellite altimetry [dissertation]. Columbus, OH, USA: The Ohio State University
    [18] Fu Yanguang, Zhou Dongxu, Zhou Xinghua, et al. 2020. Evaluation of satellite-derived tidal constituents in the South China Sea by adopting the most suitable geophysical correction models. Journal of Oceanography, 76: 183–196. doi: 10.1007/s10872-019-00537-2
    [19] Fu L L, Cazenave A. 2001. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. San Diego: Academic Press, 463
    [20] Godin G. 1986. The use of nodal corrections in the calculation of harmonic constants. International Hydrographic Review, 63(2): 143–162
    [21] Green J A M, David T W. 2013. Non-assimilated tidal modeling of the South China Sea. Deep -Sea Research Part I: Oceanographic Research Papers, 78: 42–48. doi: 10.1016/j.dsr.2013.04.006
    [22] Groves G W, Reynolds R W. 1975. An orthogonalized convolution method of tide prediction. Journal of Geophysical Research, 80(30): 4131–4138. doi: 10.1029/JC080i030p04131
    [23] Iliffe J C, Ziebart M K, Turner J F, et al. 2013. Accuracy of vertical datum surfaces in coastal and offshore zones. Survey Review, 45(331): 254–262. doi: 10.1179/1752270613Y.0000000040
    [24] Kalnay E, Kanamitsu M, Kistle R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [25] Keysers J H, Quadros N D, Collier P A. 2015. Vertical datum transformations across the Australian littoral zone. Journal of Coastal Research, 31(1): 119–128. doi: 10.2112/JCOASTRES-D-12-00228.1
    [26] Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56(5–6): 394–415. doi: 10.1007/s10236-006-0086-x
    [27] Mayer-Gürr T, Savcenko R, Bosch W, et al. 2012. Ocean tides from satellite altimetry and GRACE. Journal of Geodynamics, 59–60: 28–38. doi: 10.1016/j.jog.2011.10.009
    [28] Munk W H, Cartwright D E. 1966. Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 259(1105): 533–583. doi: 10.1098/rsta.1966.0024
    [29] Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937. doi: 10.1016/S0098-3004(02)00013-4
    [30] Ray R D. 1999. A global ocean tide model from TOPEX/POSEIDON altimetry, GOT99.2. In: NASA/TM—1999-209478. Greenbelt, MD: Goddard Space Flight Center, 58
    [31] Rizal S, Damm P, Wahid M A, et al. 2012. General circulation in the Malacca Strait and Andaman Sea: a numerical model study. American Journal of Environmental Sciences, 8(5): 479–488. doi: 10.3844/ajessp.2012.479.488
    [32] Savcenko R, Bosch W. 2012. EOT11a-Empirical ocean tide model from multi-mission satellite altimetry. Munchen: Deutsches Geodätisches Forschungsinstitut (DGFI), 89, 49, https://epic.awi.de/id/eprint/36001/1/DGFI_Report_89.pdf [2017-11-8]
    [33] Schrama E J O, Ray R D. 1994. A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12): 24799–24808. doi: 10.1029/94JC01432
    [34] Seifi F, Deng Xiaoli, Andersen O B. 2019. Assessment of the accuracy of recent empirical and assimilated tidal models for the Great Barrier Reef, Australia, using satellite and coastal data. Remote Sensing, 11(10): 1211. doi: 10.3390/rs11101211
    [35] Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194. doi: 10.1029/97JC00445
    [36] Stammer D, Ray R D, Ander O B, et al. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3): 243–282. doi: 10.1002/2014RG000450
    [37] Taguchi E, Stammer D, Zahel W. 2010. Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. Journal of Geophysical Research: Oceans, 119(7): 4573–4592. doi: 10.1002/2013JC009766
    [38] Visser P N A M, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophysical Journal International, 181(2): 789–805. doi: 10.1111/j.1365-246X.2010.04557.x
    [39] Ye A L, Robinson I S. 1983. Tidal dynamics in the South China Sea. Geophysical Journal International, 72(3): 691–707. doi: 10.1111/j.1365-246X.1983.tb02827.x
    [40] Zahel W. 1995. Assimilating ocean tide determined data into global tidal models. Journal of Marine Systems, 6(1–2): 3–13. doi: 10.1016/0924-7963(94)00014-3
    [41] Zu Tingting, Gan Jianping, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 55(2): 137–154. doi: 10.1016/j.dsr.2007.10.007
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  696
  • HTML全文浏览量:  246
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 录用日期:  2020-04-09
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回