An assessment of Arctic cloud water paths in atmospheric reanalyses

Mingyi Gu Zhaomin Wang Jianfen Wei Xiaoyong Yu

Mingyi Gu, Zhaomin Wang, Jianfen Wei, Xiaoyong Yu. An assessment of Arctic cloud water paths in atmospheric reanalyses[J]. Acta Oceanologica Sinica, 2021, 40(3): 46-57. doi: 10.1007/s13131-021-1706-5
Citation: Mingyi Gu, Zhaomin Wang, Jianfen Wei, Xiaoyong Yu. An assessment of Arctic cloud water paths in atmospheric reanalyses[J]. Acta Oceanologica Sinica, 2021, 40(3): 46-57. doi: 10.1007/s13131-021-1706-5

doi: 10.1007/s13131-021-1706-5

An assessment of Arctic cloud water paths in atmospheric reanalyses

Funds: The National Key R&D Program of China under contract No. 2018YFA0605904; the Global Change Research Program of China under contract No. 2015CB953900; the Innovative Platform Program of Chinese Arctic and Antarctic Administration under contract No. CXPT2020009; the Program of China Scholarships Council under contract No. 201908320511.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Climatologies of the cloud water path (CWP, left column), the cloud liquid water path (LWP, middle column), and the cloud ice water path (IWP, right column) from M2Modis and the five reanalyses during the period of January 1980 to December 2015.

    Figure  2.  Climatologies of standard deviations of the cloud water path (CWP, left column), the cloud liquid water path (LWP, middle column), and the cloud ice water path (IWP, right column) from M2Modis and the five reanalyses during the period of January 1980 to December 2015.

    Figure  3.  Distributions of the IWP/CWP from M2Modis and the five reanalysis datasets (a), and differences between the five reanalysis datasets and M2Modis (b).

    4.  Monthly means (first row) and monthly standard deviations (second row) of CWPs (left column), LWPs (middle column) and IWPs (right column) for different datasets.

    5.  Spatial distributions of the monthly mean (from December to November) LWPs (a) and IWPs (b) from M2Modis.

    Figure  6.  Four sub-regions of the Arctic (Mainland: dark blue; Greenland: light blue; sea-ice-covered region: yellow, where monthly mean SIC ≥15%; and ice-free ocean: dark red). a. March and b. September.

    Figure  7.  Climatological seasonal cycles of LWPs (left column) and IWPs (right column) in four sub-regions of the Arctic (rows from top to bottom: Mainland, Greenland, sea-ice-covered region, and ice-free ocean).

    Figure  8.  Annual mean anomalies of CWPs (a), LWPs (b) and IWPs (c) from M2Modis and reanalysis datasets for the period of 1980−l2015.

    Table  1.   Datasets used in this study

    VariableERA5ERA-InterimJRA-55MERRA-2MERRAM2Modis
    Institution/projectECMWFECMWFJMANASA-GSFCNASA-GSFCNASA-GSFC/CFMIP COSP
    Resolution (lon. × lat.)0.25°×0.25°0.75°×0.75°1.25°×1.25°0.625°×0.500°0.66°×0.50°0.625°×0.500°
    Temporal rangeJan. 1979 to presentJan. 1979 to presentJan. 1958 to presentJan. 1980 to presentJan. 1979 to Feb. 2016Jan. 1980 to present
    Cloud property parameterizationsTiedtke (1993)Tiedtke (1993)Sommeria and Deardorff (1977)Bacmeister et al. (2006)Bacmeister et al. (2006)
    Note: See Section 2.5 for more details of M2Modis.
    下载: 导出CSV

    Table  2.   Means and standard deviations of LWPs, IWPs, and CWPs and the ratios of average IWPs to average CWPs over the Arctic

    Reanalysis datasetsLWP/ (g·m–2)IWP/ (g·m–2)CWP/ (g·m–2)$\dfrac{\rm{IWP}}{\rm{CWP}} $/%
    MeanSTDMeanSTDMeanSTD
    M2Modis80.940.759.129.8140.0 62.642
    MERRA-258.824.013.1 5.571.825.818
    MERRA35.014.914.6 5.849.517.329
    ERA549.031 22.4 8.571.435.631
    ERA-Interim39.631.043.116.382.737.953
    JRA-5529.723.725.111.654.831.146
    下载: 导出CSV

    Table  3.   Linear trends in M2Modis and five reanalysis datasets, as well as correlation coefficients using original and detrended time series (in brackets) between M2Modis and each reanalysis dataset

    Reanalysis datasetsCWPLWPIWP
    Trend/(g·m–2·century–1)Corr/10–2Trend/(g·m–2·century–1)Corr/10–2Trend/(g·m–2·century–1)Corr/10–2
    M2Modis22 42–20
    MERRA-2894(91)1895(83)–986(87)
    MERRA667(61)1186(68)–584(76)
    ERA5560(52) 857(33)–274(73)
    ERA–I974(68)1784(62)–782(75)
    JRA–5513 69(55)1284(60)–840(57)
    Note: Red color means passing the 95% significance test.
    下载: 导出CSV
  • [1] Bacmeister J T, Suarez M J, Robertson F R. 2006. Rain reevaporation, boundary layer-convection interactions, and pacific rainfall patterns in an AGCM. Journal of the Atmospheric Sciences, 63(12): 3383–3403. doi: 10.1175/JAS3791.1
    [2] Bosilovich M G, Lucchesi R, Suarez M. 2016. MERRA-2: File specification. GMAO Office Note No. 9 (Version 1.1). Greenbelt, Maryland: GMAO
    [3] Chernokulsky A, Mokhov I I. 2012. Climatology of total cloudiness in the arctic: an intercomparison of observations and reanalyses. Advances in Meteorology, 2012: 542093. doi: 10.1155/2012/542093
    [4] Chou M D, Suarez M J, Liang X Z, et al. 2001. A thermal infrared radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2001-104606, Vol. 19. Greenbelt, MD: Goddard Space Flight Center
    [5] Curry J A, Rossow W B, Randall D, et al. 1996. Overview of arctic cloud and radiation characteristics. Journal of Climate, 9(8): 1731–1764. doi: 10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2
    [6] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
    [7] Dethloff K, Handorf D, Jaiser R, et al. 2019. Dynamical mechanisms of Arctic amplification. Annals of the New York Academy of Sciences, 1436(1): 184–194. doi: 10.1111/nyas.13698
    [8] Ebert E E, Curry J A. 1992. A parameterization of ice cloud optical properties for climate models. Journal of Geophysical Research: Atmospheres, 97(D4): 3831–3836. doi: 10.1029/91JD02472
    [9] ECMWF. 2010. IFS Documentation-CY36R1 Part IV: Physical Processes[J]. Reading, England: ECMWF, https://www.ecmwf.int/node/9233 [2010-1-26/2019-11-3], doi: 10.21957/2loi3bxcz
    [10] English J M, Kay J E, Gettelman A, et al. 2014. Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5. Journal of Climate, 27(13): 5174–5197. doi: 10.1175/JCLI-D-13-00608.1
    [11] Fouquart Y. 1988. Radiative transfer in climate models. In: Schlesinger M E, ed. Physically-Based Modelling and Simulation of Climate and Climatic Change. Dordrecht: Springer, 223–283
    [12] Fu Q, Yang P, Sun W B. 1998. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. Journal of Climate, 11(9): 2223–2237. doi: 10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2
    [13] Gelaro R, McCarty W, Suárez M J, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14): 5419–5454. doi: 10.1175/JCLI-D-16-0758.1
    [14] Geleyn J F, Hollingsworth A. 1979. An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib to Atmospheric Physics, 52: 1–16
    [15] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
    [16] Huang Y Y, Dong X Q, Xi B K, et al. 2017. Quantifying the uncertainties of reanalyzed Arctic cloud and radiation properties using satellite surface observations. Journal of Climate, 30(19): 8007–8029. doi: 10.1175/JCLI-D-16-0722.1
    [17] Johansson E, Devasthale A, Tjernström M, et al. 2017. Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters, 44(5): 2527–2536. doi: 10.1002/2017GL072687
    [18] Japan Meteorological Agency. 2019. Outline of the operational numerical weather prediction at the Japan Meteorological Agency. In: WMO Technical Progress Report on the Global Data-processing and Forecasting System and Numerical Weather Prediction. Japan: JMA, http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm [2019-3-30/2019-11-3]
    [19] Kay J E, L’Ecuyer T, Chepfer H, et al. 2016. Recent advances in arctic cloud and climate research. Current Climate Change Reports, 2(4): 159–169. doi: 10.1007/s40641-016-0051-9
    [20] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: general specifications and basic characteristics. Journal of the Meteorological Society of Japan Ser II, 93(1): 5–48. doi: 10.2151/jmsj.2015-001
    [21] Kitagawa H, Murai S. 2006. A revised radiation scheme for cloud treatments in the Japan Meteorological Agency Global Spectral Model. CAS/JSC WGNE Res. Activ Atmos Oceanic Modell, 36: 17–18
    [22] Lenaerts J T M, Van Tricht K, Lhermitte S, et al. 2017. Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophysical Research Letters, 44(7): 3355–3364. doi: 10.1002/2016GL072242
    [23] Li Z X, Le Treut H. 1992. Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modelling assumptions. Climate Dynamics, 7(3): 133–139. doi: 10.1007/BF00211155
    [24] Liu Y H, Key J R. 2016. Assessment of arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. Journal of Climate, 26(17): 6065–6083. doi: 10.1175/JCLI-D-15-0861.1
    [25] Liu Y H, Key J R, Vavrus S, et al. 2018. Time evolution of the cloud response to moisture intrusions into the Arctic during winter. Journal of Climate, 31(22): 9389–9405. doi: 10.1175/JCLI-D-17-0896.1
    [26] Martin G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. Journal of the Atmospheric Sciences, 51(13): 1823–1842. doi: 10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2
    [27] Molod A, Takacs L, Suarez M, et al. 2015. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geoscientific Model Development, 8(5): 1339–1356. doi: 10.5194/gmd-8-1339-2015
    [28] Moorthi S, Suarez M J. 1992. Relaxed arakawa-schubert. a parameterization of moist convection for general circulation models. Monthly Weather Review, 120(6): 978–1002. doi: 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
    [29] Ou S C, Liou K N. 1995. Ice microphysics and climatic temperature feedback. Atmospheric Research, 35(2–4): 127–138
    [30] Qiu S Y, Dong X Q, Xi B K, et al. 2015. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. Journal of Geophysical Research: Atmospheres, 120(15): 7737–7746. doi: 10.1002/2014JD023022
    [31] Räisänen P. 1998. Effective longwave cloud fraction and maximum-random overlap of clouds: A problem and a solution. Monthly Weather Review, 126(12): 3336–3340. doi: 10.1175/1520-0493(1998)126<3336:ELCFAM>2.0.CO;2
    [32] Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14): 3624–3648. doi: 10.1175/JCLI-D-11-00015.1
    [33] Rozenhaimer M S, Barton N, Redemann J, et al. 2018. Bias and sensitivity of boundary layer clouds and surface radiative fluxes in MERRA-2 and airborne observations over the Beaufort Sea during the ARISE campaign. Journal of Geophysical Research: Atmospheres, 123(12): 6565–6580. doi: 10.1029/2018JD028349
    [34] Savijärvi H, Räisänen P. 1998. Long-wave optical properties of water clouds and rain. Tellus A, 50(1): 1–11. doi: 10.3402/tellusb.v50i1.16018
    [35] Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337. doi: 10.1038/nature09051
    [36] Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77(1–2): 85–96. doi: 10.1016/j.gloplacha.2011.03.004
    [37] Slingo A. 1989. A GCM parameterization for the shortwave radiative properties of water clouds. Journal of the Atmospheric Sciences, 46(10): 1419–1427. doi: 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2
    [38] Sommeria G, Deardorff J W. 1977. Subgrid-scale condensation in models of nonprecipitating clouds. Journal of the Atmospheric Sciences, 34(2): 344–355. doi: 10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2
    [39] Tan I, Storelvmo T. 2019. Evidence of strong contributions from mixed-phase clouds to arctic climate change. Geophysical Research Letters, 46(5): 2894–2902. doi: 10.1029/2018GL081871
    [40] Taylor P C, Boeke R C, Li Y, et al. 2019. Arctic cloud annual cycle biases in climate models. Atmospheric Chemistry and Physics, 19(13): 8759–8782. doi: 10.5194/acp-19-8759-2019
    [41] Tiedtke M. 1993. Representation of clouds in large-scale models. Monthly Weather Review, 121(11): 3040–3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
    [42] Walsh J E, Chapman W L, Portis D H. 2009. Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. Journal of Climate, 22(9): 2316–2334. doi: 10.1175/2008JCLI2213.1
    [43] Wang Z M, Zhang X D, Guan Z Y, et al. 2015. An atmospheric origin of the multi-decadal bipolar seesaw. Scientific Reports, 5: 8909. doi: 10.1038/srep08909
    [44] Washington W M, Williamson D L. 1977. A description of the NCAR global circulation models. National Center for Atmospheric Research Ncar Koha Opencat, 17: 111–172, doi: 10.1016/b978-0-12-460817-7.50008-2
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  150
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2020-08-17
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回