Cross-calibration of brightness temperature obtained by FY-3B/MWRI using Aqua/AMSR-E data for snow depth retrieval in the Arctic

Haihua Chen Lele Li Lei Guan

Haihua Chen, Lele Li, Lei Guan. Cross-calibration of brightness temperature obtained by FY-3B/MWRI using Aqua/AMSR-E data for snow depth retrieval in the Arctic[J]. Acta Oceanologica Sinica, 2021, 40(1): 43-53. doi: 10.1007/s13131-021-1717-2
Citation: Haihua Chen, Lele Li, Lei Guan. Cross-calibration of brightness temperature obtained by FY-3B/MWRI using Aqua/AMSR-E data for snow depth retrieval in the Arctic[J]. Acta Oceanologica Sinica, 2021, 40(1): 43-53. doi: 10.1007/s13131-021-1717-2

doi: 10.1007/s13131-021-1717-2

Cross-calibration of brightness temperature obtained by FY-3B/MWRI using Aqua/AMSR-E data for snow depth retrieval in the Arctic

Funds: The National Key Research and Development Program of China under contract Nos 2019YFA0607001 and 2016YFC1402704; the Global Change Research Program of China under contract No. 2015CB9539011.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Cross-calibration for 10.7–89.0 GHz (H/V polarization, ascending) in January 2011.

    Figure  2.  Statistical histograms of data on Tb of the MWRI and AMSR-E (before and after calibration) for all channels with H/V polarization (left: original MWRI and AMSR-E; right: corrected MWRI and AMSR-E).

    Figure  3.  Comparison of daily average values of Tb for the MWRI and AMSR-E (V polarization 89 GHz, on January 1, 2011).

    Figure  4.  Comparison of the biases, STD, and RMSE in terms of values of Tb between the MWRI and the AMSR-E (channels: V18.7 GHz, V23.8 GHz, V36.5 GHz, H/V 89.0 GHz), before and after cross calibration.

    Figure  5.  Ratios of the water, ice, and ice-water mixture in the Arctic.

    Figure  6.  Comparison of distributions of snow depth derived from the MWRI before and after cross-calibration, and those of the AMSR-E level 3 in the Arctic.

    Figure  7.  Comparison of snow depth obtained by the MWRI and AMSR-E L3 from January 1 to April 30, 2011 (120 d).

    Figure  8.  The histogram of snow depth biases between the MWRI (before and after cross-calibration) and AMSR-E data from January 1 to April 30, 2011

    Figure  9.  The Mean absolute error (MAE) of snow depths between the MWRI results and the AMSR-E L3 products from January 1 to April 30, 2011 (120 d).

    Table  1.   Comparison of AMSR-E and MWRI parameters

    ParameterSensor
    AMSR-E/AQUAMWRI/FY-3B
    Band 1 GHz10.718.723.836.589.010.6518.723.836.589.0
    Spatial resolution51 km×29 km27 km×16 km32 km×18 km14 km×8 km6 km×4 km51 km×85 km30 km×50 km27 km×45 km18 km×30 km9 km×15 km
    Bandwidths/MHz1002004001 0003 0001802004009004 600
    PolarizationV/HV/H
    Equatorial time13:30 (ascending)
    01:30 (descending)
    13:40 (ascending)
    01:40 (descending)
    Incident angle/(°)55.053.5
    Swath width/km1 4501 400
    下载: 导出CSV

    Table  2.   Comparison of statistical parameters before and after the cross-calibration of matching data on values of Tb of the MWRI and AMSR-E

    ChannelBefore cross-calibration/after cross-calibration
    AscendingDescending
    NumberBias/KSTD/KRNumberBias/KSTD/KR
    10.7 GHz (V)27 419 394–3.814 9/0.004 04.965 4/1.714 60.997 4/0.999 120 619 591–3.731 0/–0.002 45.198 5/1.689 00.997 6/0.999 2
    10.7 GHz (H)25 560 857–0.701 3/0.000 14.081 3/2.399 30.998 3/0.999 419 202 8580.322 3/0.002 63.680 0/2.312 50.998 8/0.999 5
    18.7 GHz (V)27 905 067–1.646 7/–0.00094.009 5/1.352 10.997 4/0.999 121 042 823–1.644 1/–0.006 34.126 6/1.316 50.997 7/0.999 2
    18.7 GHz (H)25 962 9690.858 3/0.000 53.006 0/1.909 70.998 8/0.999 519 544 1901.504 2/–0.004 92.895 4/1.883 10.999 0/0.999 5
    23.8 GHz (V)27 975 385–3.075 7/0.000 33.844 0/1.669 80.992 7/0.997 521 111 826–2.783 2/–0.000 23.973 3/1.624 70.993 3/0.997 7
    23.8 GHz (H)25 151 517–0.164 6/–0.003 43.278 1/2.140 50.997 6/0.998 918 840 2450.494 6/–0.002 33.240 8/2.167 50.997 9/0.999 0
    36.5 GHz (V)27 461 876–2.980 8/0.001 45.259 5/2.246 70.974 6/0.992 820 794 592–3.277 8/–0.003 75.246 0/2.127 90.976 9/0.992 7
    36.5 GHz (H)22 491 6290.869 9/–0.004 63.317 3/2.219 80.996 8/0.998 516 585 2841.516 8/0.000 53.378 8/2.259 70.996 9/0.998 5
    89.0 GHz (V)22304767–1.424 5/0.006 92.694 3/2.441 50.988 7/0.990 418 163 675–1.108 7/0.003 22.626 5/2.393 40.988 5/0.990 3
    89.0 GHz (H)15749987–0.286 0/–0.000 92.697 6/2.531 80.991 9/0.993 011 461 7190.082 6/–0.008 92.747 6/2.567 20.990 5/0.991 8
    下载: 导出CSV

    Table  3.   Comparison of statistical parameters before and after cross-calibration between the MWRI and AMSR-E in terms of data on the daily average Tb

    ChannelFrequency/
    GHz
    Before cross-calibration/
    after cross-calibration
    Bias/KSTD/KRMSE/K
    V18.7–1.98/–0.063.06/1.594.33/1.64
    V23.8–3.27/–0.072.68/1.874.82/1.96
    V36.5–3.40/–0.243.38/2.575.90/2.68
    V89.0–1.39/–0.163.41/3.443.84/3.46
    H89.0–0.90/–0.715.82/5.906.00/5.96
    下载: 导出CSV

    Table  4.   Monthly statistical evaluation of differences in snow depth between the MWRI and the AMSR-E L3 after cross-calibration

    TimeNumberBias/cmSTD/cmRMSE/cm
    Jan. 2011 1 317 171 0.25 4.80 4.81
    Feb. 2011 1 374 930 0.31 4.59 4.60
    Mar. 2011 1 554 678 0.38 4.57 4.59
    Apr. 2011 1 448 672 0.18 4.19 4.19
    下载: 导出CSV
  • [1] Abdalati W, Steffen K, Otto C, et al. 1995. Comparison of brightness temperatures from SSMI instruments on the DMSP F8 and FII satellites for Antarctica and the Greenland ice sheet. International Journal of Remote Sensing, 16(7): 1223–1229. doi: 10.1080/01431169508954473
    [2] Cavalieri D J, Comiso J, Markus T. 2014. AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids, Version 3. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center
    [3] Cavalieri D J, Parkinson C L. 2012. Arctic sea ice variability and trends, 1979–2010. The Cryosphere, 6: 881–889. doi: 10.5194/tc-6-881-2012
    [4] Cavalieri D J, Parkinson C L, DiGirolamo N, et al. 2012. Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records. IEEE Geoscience and Remote Sensing Letters, 9(2): 233–236. doi: 10.1109/LGRS.2011.2166754
    [5] Cavalieri D J, Parkinson C L, Vinnikov K Y. 2003. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophysical Research Letters, 30(18): 1970
    [6] Chander G, Hewison T J, Fox N, et al. 2013. Overview of intercalibration of satellite instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3): 1056–1080. doi: 10.1109/TGRS.2012.2228654
    [7] Comiso J C, Cavalieri D J, Markus T. 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 243–252. doi: 10.1109/TGRS.2002.808317
    [8] Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703
    [9] Das N N, Colliander A, Chan S K, et al. 2014. Intercomparisons of brightness temperature observations over land from AMSR-E and WindSat. IEEE Transactions on Geoscience and Remote Sensing, 52(1): 452–464. doi: 10.1109/TGRS.2013.2241445
    [10] Derksen C, Walker A E. 2003. Identification of systematic bias in the cross-platform (SMMR and SSM/I) EASE-grid brightness temperature time series. IEEE Transactions on Geoscience and Remote Sensing, 41(4): 910–915. doi: 10.1109/TGRS.2003.812003
    [11] Du Jinyang, Kimball J S, Shi Jiancheng, et al. 2014. Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements. Remote Sensing, 6(9): 8594–8616. doi: 10.3390/rs6098594
    [12] Gao Shuo, Li Zhen, Chen Quan, et al. 2019. Inter-sensor calibration between HY-2B and AMSR2 passive microwave data in land surface and first result for snow water equivalent retrieval. Sensors, 19(22): 5023. doi: 10.3390/s19225023
    [13] Hu Tongxi, Zhao Tianjie, Shi Jiancheng, et al. 2016. Inter-calibration of AMSR-E and AMSR2 brightness temperature. Remote Sensing Technology and Application (in Chinese), 31(5): 919–924
    [14] Huang Wei, Hao Yanling, Wang Jin, et al. 2013. Brightness temperature data comparison and evaluation of FY-3B microwave radiation imager with AMSR-E. Periodical of Ocean University of China (in Chinese), 43(11): 99–111
    [15] Jezek K C, Merry C J, Cavalieri D J. 1993. Comparison of SMMR and SSM/I passive microwave data collected over Antarctica. Annals of Glaciology, 17: 131–136. doi: 10.3189/S0260305500012726
    [16] Kaleschke L, Lüpkes C, Vihma T, et al. 2001. SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27(5): 526–537. doi: 10.1080/07038992.2001.10854892
    [17] Kelly R E, Chang A T, Tsang L, et al. 2003. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 230–242. doi: 10.1109/TGRS.2003.809118
    [18] Li Lele, Chen Haihua, Guan Lei. 2019. Retrieval of snow depth on sea ice in the arctic using the FengYun-3B microwave radiation imager. Journal of Ocean University of China, 18(3): 580–588. doi: 10.1007/s11802-019-3873-y
    [19] Li Qin, Zhong Ruofei. 2011. Multiple surface parameters retrieval of simulated AMSR-E data. Remote Sensing for Land and Resources (in Chinese), 23(1): 42–47
    [20] Liu Qingquan, Ji Qing, Pang Xiaoping, et al. 2018. Inter-calibration of passive microwave satellite brightness temperatures observed by F13 SSM/I and F17 SSMIS for the retrieval of snow depth on Arctic first-year sea ice. Remote Sensing, 10(1): 36
    [21] Lu Zhou, Stroeve J, Xu Shiming, et al. 2020. Inter-comparison of snow depth over sea ice from multiple methods. The Cryosphere Discussions, preprint, https://doi.org/10.5194/tc-2020-65
    [22] Markus T, Cavalieri D J. 1998. Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data. In: Jeffries M O, ed. Antarctic Sea Ice: Physical Processes, Interactions and Variability. Washington, DC: American Geophysical Union, 19–40
    [23] Markus T, Cavalieri D J. 2008. AMSR-E algorithm theoretical basis document supplement: Sea ice products. Greenbelt, MD, USA: Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, 1–9
    [24] Maslowski W, Kinney J C, Higgins M, et al. 2012. The future of arctic sea ice. Annual Review of Earth and Planetary Sciences, 40(1): 625–654. doi: 10.1146/annurev-earth-042711-105345
    [25] Massom R A, Harris P T, Michael K J, et al. 1998. The distribution and formative processes of latent-heat polynyas in East Antarctica. Annals of Glaciology, 27: 420–426. doi: 10.3189/1998AoG27-1-420-426
    [26] Meier W N, Khalsa S J S, Savoie M H. 2011. Intersensor calibration between F-13 SSM/I and F-17 SSMIS near-real-time sea ice estimates. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3343–3349. doi: 10.1109/TGRS.2011.2117433
    [27] Nihashi S, Ohshima K I, Tamura T, et al. 2009. Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. Journal of Geophysical Research, 114(C10): C10025. doi: 10.1029/2008JC005222
    [28] Parkinson C L, Cavalieri D J. 2008. Arctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research: Oceans, 113(C7): C07003
    [29] Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03
    [30] Stroeve J, Maslanik J, Li Xiaoming. 1998. An intercomparison of DMSP F11- and F13-derived sea ice products. Remote Sensing of Environment, 64(2): 132–152. doi: 10.1016/S0034-4257(97)00174-0
    [31] Svendsen E, Kloster K, Farrelly B, et al. 1983. Norwegian remote sensing experiment: Evaluation of the nimbus 7 scanning multichannel microwave radiometer for sea ice research. Journal of Geophysical Research: Oceans, 88(C5): 2781–2791. doi: 10.1029/JC088iC05p02781
    [32] Yang Hu, Weng Fuzhong, Lv Liqing, et al. 2011. The FengYun-3 microwave radiation imager on-orbit verification. IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4552–4560. doi: 10.1109/TGRS.2011.2148200
    [33] Yang Hu, Zou Xiaolei, Li Xiaoqing, et al. 2012. Environmental data records from FengYun-3B microwave radiation imager. IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4986–4993. doi: 10.1109/TGRS.2012.2197003
    [34] Zhang Shugang. 2012. An algorithm to detect arctic sea ice edge using microwave brightness temperature. Periodical of Ocean University of China (in Chinese), 42(11): 1–7
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  48
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 录用日期:  2020-10-22
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回