Rapid decrease in Antarctic sea ice in recent years

Guanghua Hao Hui Shen Yongming Sun Chunhua Li

Guanghua Hao, Hui Shen, Yongming Sun, Chunhua Li. Rapid decrease in Antarctic sea ice in recent years[J]. Acta Oceanologica Sinica, 2021, 40(7): 119-128. doi: 10.1007/s13131-021-1762-x
Citation: Guanghua Hao, Hui Shen, Yongming Sun, Chunhua Li. Rapid decrease in Antarctic sea ice in recent years[J]. Acta Oceanologica Sinica, 2021, 40(7): 119-128. doi: 10.1007/s13131-021-1762-x

doi: 10.1007/s13131-021-1762-x

Rapid decrease in Antarctic sea ice in recent years

Funds: The National Key R&D Program of China under contract Nos 2018YFA0605902 and 2018YFA0605903; the National Natural Science Foundation of China under contract Nos 41606218 and 41941009; the fund of Chinese National Antarctic Research Expedition logistics support item.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of the five subregions used for the sea ice analyses.

    Figure  2.  Yearly SIC trend during January 1979 to December 2019 calculated by monthly SIC anomoly (a) and monthly SIC trend during January 2014 to January 2019 (b). The shading indicates the 95% significance level.

    Figure  3.  Monthly trends of SIE during January 1979 to December 2019 (black line), January 1979 to December 2013 (red line) and January 2014 to December 2019 (blue line) for the Antarctic (Ant, a), Weddell Sea (WS, b), Indian Ocean (IO, c), western Pacific Ocean (PO, d), Ross Sea (RS, e), and Bellingshausen Sea and Amundsen Sea (BA, f). The numbers indicate the slope and standard deviations of the yearly trend during the longtime periods (black and red) and monthly trend (blue) for the rencent year in the five subregions.

    Figure  4.  Monthly Ta-2m trend during January 1979 to December 2019 in summer (a) and autumn (c), and January 2014 to December 2019 in summer (b) and autumn (d). The pink contours indicate the 90% significance level.

    Figure  5.  Distribution of Ta-2m differences (shading) and 10 m wind differences (vector) (2014–2019 minus 1979–2013) in summer (a), autumn (b), winter (c), and spring (d). The pink contours indicate the 90% significance level.

    6.  Distribution of the vertically integrated southward flux difference of moist static energy (2014–2019 minus 1979–2013) in summer (a), autumn (b), winter (c), and spring (d). The pink contours indicate the 90% significance level.

    Figure  7.  Distribution of low cloud cover difference (2014–2019 minus 1979–2013) in summer (a), autumn (b), winter (c), and spring (d). The pink contours indicate the 90% significance level.

    Figure  8.  The distribution of net downward longwave radiation difference (2014–2019 minus 1979–2013) in summer (a), autumn (b), winter (c), and spring (d). The pink contours indicate the 90% significance level.

    Figure  9.  The distribution of downward solar radiation difference (2014–2019 minus 1979–2013) in summer (a) and spring (b). The pink contours indicate the 90% significance level.

    Figure  10.  The distribution of net downward solar radiation difference (2014–2019 minus 1979–2013) in summer (a) and spring (b). The pink contours indicate the 90% significance level.

    Table  1.   The seasonal trend of SIE in summer (January–March), autumn (April–June), winter (July–September) and spring (October–December)

    PeriodSectorYearly SIE trendSeasonal trend of SIE
    Summer (JFM)Autumn (AMJ)Winter (JAS)Spring (OND)
    Value/
    (103 km2·a–1)
    RValue/
    (103 km2·a–1)
    RValue/
    (103 km2·a–1)
    RValue/
    (103 km2·a–1)
    RValue/
    (103 km2·a–1)
    R
    1979–2019Ant6.8±2.23.17.2±7.70.910.4±8.11.38.2±4.71.71.5±6.80.2
    WS2.3±1.51.512.7±4.92.64.8±4.81.0–3.3±4.20.8–5.2±4.91.1
    IO1.5±0.81.92.2±1.31.72.6±2.11.31.7±2.80.6–0.3±3.20.1
    PO2.1±0.63.53.1±1.52.13.1±1.52.11.6±2.20.70.5±1.90.3
    RS4.6±1.24.0–1.2±4.10.36.9±3.71.95.4±3.21.77.5±3.62.1
    BA–3.7±0.94.2–9.5±1.85.3–7.1±2.52.82.8±2.91.0–0.9±3.20.3
    1979–2013Ant18.6±2.28.415.8±7.72.121.5±7.42.917.3±4.34.019.6±5.93.3
    WS4.7±1.82.614.9±5.62.78.2±5.31.5–3.4±5.40.6–1.0±6.10.2
    IO5.3±1.05.52.8±1.61.85.6±2.62.26.4±3.22.06.3±3.61.7
    PO2.4±0.83.13.2±2.01.63.9±1.82.11.0±2.90.31.6±2.50.6
    RS11.6±1.48.47.3±4.61.612.3±4.42.812.0±3.83.214.9±4.33.4
    BA–5.4±1.15.0–12.4±2.25.5–8.5±3.02.81.2±3.50.4–2.1±4.20.5
    2014–2019Ant–414.8±42.29.8–396.3±114.33.5–449.6±1183.8–279.6±68.14.1–341.8±131.62.6
    WS–201.0±25.38.0–208.4±62.53.3–192.7±67.82.8–22.8±59.90.4–101.5±63.81.6
    IO–65.8±14.54.5–17.3±23.20.7–62.5±12.65.0–76.9±42.61.8–68.4±47.91.4
    PO–32.9±8.14.1–50.5±13.33.8–59.0±6.78.8–26.1±26.21.0–46.1±29.11.6
    RS–94.4±19.34.9–151.9±47.23.2–123.6±36.93.3–84.7±39.12.2–71.6±35.32.0
    BA–20.8±17.01.231.8±19.11.7–11.7±46.60.3–69.1±47.51.5–54.3±46.91.2
    Note: R is the ratio of the slope magnitude to its standard deviation. The bold numbers indicate the 95% significance level.
    下载: 导出CSV
  • [1] Bromwich D H, Nicolas J P, Monaghan A J, et al. 2013. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2): 139–145. doi: 10.1038/NGEO1671
    [2] Cavalieri D J, Crawford J, Drinkwater M, et al. 1992. NASA sea ice validation program for the DMSP SSM/I: final report. NASA Technical Memorandum 104559. Washington, DC: National Aeronautics and Space Administration
    [3] Cavalieri D J, Gloersen P, Parkinson C L, et al. 1997. Observed hemispheric asymmetry in global sea ice changes. Science, 278(5340): 1104–1106. doi: 10.1126/science.278.5340.1104
    [4] Cavalieri D J, Parkinson C L. 2008. Antarctic sea ice variability and trends, 1979−2006. Journal of Geophysical Research: Oceans, 113(C7): C07004. doi: 10.1029/2007JC004564
    [5] Cavalieri D J, Parkinson L C, Gloersen P, et al. 1996. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1. [Antarctic, 1979 to 2019]. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: https://doi.org/10.5067/8GQ8LZQVL0VL
    [6] Cerrone D, Fusco G. 2018. Low-frequency climate modes and Antarctic sea ice variations, 1982–2013. Journal of Climate, 31(1): 147–175. doi: 10.1175/JCLI-D-17-0184.1
    [7] Comiso J C, Gersten R A, Stock L V, et al. 2017a. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. Journal of Climate, 30(6): 2251–2267. doi: 10.1175/JCLI-D-16-0408.1
    [8] Comiso J C, Meier W N, Gersten R. 2017b. Variability and trends in the Arctic Sea ice cover: results from different techniques. Journal of Geophysical Research: Oceans, 122(8): 6883–6900. doi: 10.1002/2017JC012768
    [9] Comiso J C, Nishio F. 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research: Oceans, 113(C2): C02S07. doi: 10.1029/2007JC004257
    [10] Curry J A, Schramm J L, Ebert E E. 1995. Sea ice-albedo climate feedback mechanism. Journal of Climate, 8(2): 240–247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [11] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
    [12] Doddridge E W, Marshall J. 2017. Modulation of the seasonal cycle of Antarctic sea ice extent related to the southern annular mode. Geophysical Research Letters, 44(19): 9761–9768. doi: 10.1002/2017GL074319
    [13] Elders A, Pegion K. 2019. Diagnosing sea ice from the north American multi model ensemble and implications on mid-latitude winter climate. Climate Dynamics, 53(12): 7237–7250. doi: 10.1007/s00382-017-4049-3
    [14] Francis J A, Hunter E. 2006. New insight into the disappearing Arctic sea ice. Eos, Transactions American Geophysical Union, 87(46): 509–511. doi: 10.1029/2006EO460001
    [15] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
    [16] Holland M M, Landrum L, Kostov Y, et al. 2017. Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models. Climate Dynamics, 49(5): 1813–1831. doi: 10.1007/s00382-016-3424-9
    [17] Kapsch M L, Graversen R G, Tjernström M. 2013. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3(8): 744–748. doi: 10.1038/nclimate1884
    [18] Kjellsson J, Döös K, Laliberté F B, et al. 2014. The atmospheric general circulation in thermodynamical coordinates. Journal of the Atmospheric Sciences, 71(3): 916–928. doi: 10.1175/JAS-D-13-0173.1
    [19] Lee S K, Volkov D L, Lopez H, et al. 2017. Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica. Journal of Geophysical Research: Oceans, 122(5): 4413–4430. doi: 10.1002/2016JC012416
    [20] Liu Jiping, Curry J A, Martinson D G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31(2): L02205. doi: 10.1029/2003GL018732
    [21] Marshall G J. 2003. Trends in the southern annular mode from observations and reanalyses. Journal of Climate, 16(24): 4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
    [22] Marshall G J. 2007. Half-century seasonal relationships between the southern annular mode and Antarctic temperatures. International Journal of Climatology, 27(3): 373–383. doi: 10.1002/joc.1407
    [23] Meehl G A, Arblaster J M, Chung C T Y, et al. 2019. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications, 10(1): 14. doi: 10.1038/s41467-018-07865-9
    [24] Naud C M, Booth J F, Del Genio A D, et al. 2014. Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. Journal of Climate, 27(5): 2109–2124. doi: 10.1175/JCLI-D-13-00432.1
    [25] Nicolas J P, Bromwich D H. 2014. New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses. Journal of Climate, 27(21): 8070–8093. doi: 10.1175/JCLI-D-13-00733.1
    [26] Parkinson C L, Cavalieri D J. 2012. Antarctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4): 871–880. doi: 10.5194/tc-6-871-2012
    [27] Parkinson C L. 2019. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116(29): 14414–14423. doi: 10.1073/pnas.1906556116
    [28] Schlosser E, Haumann F A, Raphael M N. 2017. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. The Cryosphere, 12(3): 1103–1119. doi: 10.5194/tc-12-1103-2018
    [29] Shu Qi, Qiao Fangli, Song Zhenya, et al. 2012. Sea ice trends in the Antarctic and their relationship to surface air temperature during 1979–2009. Climate Dynamics, 38(11): 2355–2363. doi: 10.1007/s00382-011-1143-9
    [30] Simpkins G R, Ciasto L M, England M H. 2013. Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophysical Research Letters, 40(14): 3643–3648. doi: 10.1002/grl.50715
    [31] Stammerjohn S E, Martinson D G, Smith R C, et al. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research: Oceans, 113(C3): C03S90. doi: 10.1029/2007JC004269
    [32] Stuecker M F, Bitz C M, Armour K C, et al. 2017. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophysical Research Letters, 44(17): 9008–9019. doi: 10.1002/2017GL074691
    [33] Thompson D W J, Wallace J M. 2000. Annular modes in the extratropical circulation. part I: month-to-month variability. Journal of Climate, 13(5): 1000–1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
    [34] Turner J, Phillips T, Marshall G J, et al. 2017. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44(13): 6868–6875. doi: 10.1002/2017GL073656
    [35] Vaughan D G, Marshall G J, Connolley W M, et al. 2003. Recent rapid regional climate warming on the Antarctic peninsula. Climatic Change, 60(3): 243–274. doi: 10.1023/A:1026021217991
    [36] Wang Guomin, Hendon H H, Arblaster J M, et al. 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nature Communications, 10(1): 13. doi: 10.1038/s41467-018-07689-7
    [37] Wu Yang, Wang Zhaomin, Liu Chengyan, et al. 2020. Impacts of high-frequency atmospheric forcing on Southern Ocean circulation and Antarctic sea ice. Advances in Atmospheric Sciences, 37(5): 515–531. doi: 10.1007/s00376-020-9203-x
    [38] Yao Bin, Teng Shiwen, Lai Ruize, et al. 2020. Can atmospheric reanalyses (CRA and ERA5) represent cloud spatiotemporal characteristics?. Atmospheric Research, 244: 105091. doi: 10.1016/j.atmosres.2020.105091
    [39] Yuan Naiming, Ding Minghu, Ludescher J, et al. 2017. Increase of the Antarctic Sea Ice Extent is highly significant only in the Ross Sea. Scientific Reports, 7: 41096. doi: 10.1038/srep41096
    [40] Zhang Jinlun. 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. Journal of Climate, 20(11): 2515–2529. doi: 10.1175/JCLI4136.1
    [41] Zwally H J, Comiso J C, Parkinson C L, et al. 2002. Variability of Antarctic sea ice 1979–1998. Journal of Geophysical Research: Oceans, 107(C5): 3041. doi: 10.1029/2000JC000733
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  99
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 录用日期:  2020-11-13
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回