An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures

Zhenqi Guo Tao Liu Lei Guo Xiuting Su Yan Zhang Sanpeng Li

Zhenqi Guo, Tao Liu, Lei Guo, Xiuting Su, Yan Zhang, Sanpeng Li. An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures[J]. Acta Oceanologica Sinica, 2021, 40(10): 144-151. doi: 10.1007/s13131-021-1834-y
Citation: Zhenqi Guo, Tao Liu, Lei Guo, Xiuting Su, Yan Zhang, Sanpeng Li. An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures[J]. Acta Oceanologica Sinica, 2021, 40(10): 144-151. doi: 10.1007/s13131-021-1834-y

doi: 10.1007/s13131-021-1834-y

An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures

Funds: The Shandong Joint Funds of National Natural Science Foundation of China under contract No. U2006213; the Fundamental Research Funds for the Central Universities under contract No. 201962011; the Grant of Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. MGQNLM-KF201804.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Phoenix V | Tom | x Industrial CT.

    Figure  2.  Operation interface of VG Studio MAX 2.1.

    Figure  3.  Scanning graph of the gas sample at 2 MPa.

    Figure  4.  CT scanning of a single slice and gas, liquid, and solid separation diagram (X-Y plane direction).

    Figure  5.  Comparison of bubble porosity under different gas reservoir pressures (side length: 2.17 mm).

    Figure  6.  Comparison of 3D images of soil skeleton from 4 MPa to 6 MPa.

    Figure  7.  Three-dimensional distribution of bubbles.

    Figure  8.  Apparent gas content distribution curve.

    Figure  9.  Apparent water and porosity content distribution curve.

    Figure  10.  Relations between bubble number and radius.

    Figure  11.  Apparent gas content distribution curve under pressure at 0 MPa and 2 Mpa.

    Figure  12.  Comparison of gas content changes during pressurization.

    Figure  13.  Comparison of gas content changes between 2 MPa and 6 MPa.

    Figure  14.  Bubble number under varied gas reservoir pressures.

    Figure  15.  Bubble volume under different gas reservoir pressures.

    Table  1.   Basic properties parameters of test soil

    Feature parameterValue
    Water content (ω)40.0%
    Density (ρ)2.82 g/cm3
    Dry density (ρd)1.95 g/cm3
    Gravity specific (Gs)2.7
    Void ratio (e)0.71
    Porosity (n)43%
    下载: 导出CSV

    Table  2.   Bubble volume of each equivalent radius range under different gas reservoir pressures (mm3)

    Radius range/μmReservoir pressures/MPa
    02463
    <200.0640.0900.0570.0580.100
    20–400.3040.7530.3380.4970.491
    40–600.5451.1960.6500.9310.549
    60–801.0671.2881.1311.2110.888
    80–1002.0001.3841.4911.7181.392
    100–20022.3027.5748.93310.0969.137
    200–30024.4475.45011.1769.53511.389
    300–40016.2697.11510.18813.50311.609
    400–50012.1426.9889.8499.4829.945
    >500120.636160.066157.064188.412174.696
    Summary199.776191.905200.877235.442220.196
    下载: 导出CSV
  • [1] Anderson A L, Abegg F, Hawkins J A, et al. 1998. Bubble populations and acoustic interaction with the gassy floor of Eckernförde Bay. Continental Shelf Research, 18(14−15): 1807–1838. doi: 10.1016/S0278-4343(98)00059-4
    [2] Best A I, Tuffin M D J, Dix J K, et al. 2004. Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments. Journal of Geophysical Research: Solid Earth, 109(B8): B08101
    [3] Blunt M J, Bijeljic B, Dong H, et al. 2013. Pore-scale imaging and modelling. Advances in Water Resources, 51: 197–216. doi: 10.1016/j.advwatres.2012.03.003
    [4] Davis A M. 1992. Shallow gas: an overview. Continental Shelf Research, 12(10): 1077–1079. doi: 10.1016/0278-4343(92)90069-V
    [5] Esrig M I, Kirby R C. 1977. Implications of gas content for predicting the stability of submarine slopes. Marine Geotechnology, 2(1−4): 81–100. doi: 10.1080/10641197709379771
    [6] Fleischer P, Orsi T, Richardson M, et al. 2001. Distribution of free gas in marine sediments: a global overview. Geo-Marine Letters, 21(2): 103–122. doi: 10.1007/s003670100072
    [7] Hong Yi, Wang Lizhong, Ng C W W, et al. 2017. Effect of initial pore pressure on undrained shear behaviour of fine-grained gassy soil. Canadian Geotechnical Journal, 54(11): 1592–1600. doi: 10.1139/cgj-2017-0015
    [8] Jin S, Nagao J, Takeya S, et al. 2006. Structural investigation of methane hydrate sediments by microfocus X-ray computed tomography technique under high-pressure conditions. Japanese Journal of Applied Physics (in Japanese), 45(24−28): L714
    [9] Judd A, Hovland M. 2009. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge, UK: Cambridge University Press, 15–26
    [10] Kim G Y, Narantsetseg B, Kim J W, et al. 2014. Physical properties and micro-and macro-structures of gassy sediments in the inner shelf of SE Korea. Quaternary International, 344: 170–180. doi: 10.1016/j.quaint.2014.01.049
    [11] Li Ping, Du Jun, Liu Lejun, et al. 2010. Distribution characteristics of the shallow gas in Chinese offshore seabed. The Chinese Journal of Geological Hazard and Control (in Chinese), 21(1): 69–74
    [12] Riboulot V, Cattaneo A, Sultan N, et al. 2013. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria. Earth and Planetary Science Letters, 375: 78–91. doi: 10.1016/j.jpgl.2013.05.013
    [13] Robb G B N, Leighton T G, Dix J K, et al. 2006. Measuring bubble populations in gassy marine sediments: a review. In: Proceedings of the Institute of Acoustics Spring Conference. Milton Keynes, UK: Institute of Acoustics, 60–68
    [14] Robb G B N, Leighton T G, Humphrey V F, et al. 2007. Investigating Acoustic Propagation in Gassy Marine Sediments using a Bubbly Gel Mimic. Southampton, UK: University of Southampton
    [15] Sobkowicz J C, Morgenstern N R. 1984. The undrained equilibrium behaviour of gassy sediments. Canadian Geotechnical Journal, 21(3): 439–448. doi: 10.1139/t84-048
    [16] Sultan N, Cochonat P, Canals M, et al. 2004. Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Marine Geology, 213(1−4): 291–321. doi: 10.1016/j.margeo.2004.10.011
    [17] Sultan N, Garziglia S. 2014. Mechanical behaviour of gas-charged fine sediments: model formulation and calibration. Géotechnique, 64(11): 851–864
    [18] Thomas S D. 1987. The consolidation behaviour of gassy soil [dissertation]. Oxford, UK: University of Oxford, 61–69
    [19] Thomas S, Hill A J, Clare M, et al. 2011. Understanding engineering challenges posed by natural hydrocarbon infiltration and the development of authigenic carbonate. In: James J, Stephan U, eds. Proceedings of Offshore Technology Conference. Houston, TX, USA: Southampton Press, 164–167
    [20] Tuffin M D J. 2001. The geoacoustic properties of shallow, gas-bearing sediments [dissertation]. Southampton: University of Southampton, 44–67
    [21] Warner G S, Nieber J L, Moore I D, et al. 1989. Characterizing macropores in soil by computed tomography. Soil Science Society of America Journal, 53(3): 653–662. doi: 10.2136/sssaj1989.03615995005300030001x
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  106
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 录用日期:  2021-03-31
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回