Spatial distribution and export of nutrients and metal elements in the subterranean estuary of Daya Bay

Zhaoxi Liu Mingchen Ge Qianqian Wang Xuejing Wang Kai Xiao Gang Li Hailong Li

Zhaoxi Liu, Mingchen Ge, Qianqian Wang, Xuejing Wang, Kai Xiao, Gang Li, Hailong Li. Spatial distribution and export of nutrients and metal elements in the subterranean estuary of Daya Bay[J]. Acta Oceanologica Sinica, 2023, 42(8): 77-86. doi: 10.1007/s13131-023-2212-8
Citation: Zhaoxi Liu, Mingchen Ge, Qianqian Wang, Xuejing Wang, Kai Xiao, Gang Li, Hailong Li. Spatial distribution and export of nutrients and metal elements in the subterranean estuary of Daya Bay[J]. Acta Oceanologica Sinica, 2023, 42(8): 77-86. doi: 10.1007/s13131-023-2212-8

doi: 10.1007/s13131-023-2212-8

Spatial distribution and export of nutrients and metal elements in the subterranean estuary of Daya Bay

Funds: The National Key R&D Program of China under contract No. 2021YFC3200501; the National Natural Science Foundation of China under contract Nos 42107055 and 42130703; the Fund of Shenzhen Science and Technology Innovation Committee under contract No. 20200925174525002.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • Figure  1.  Location information of the study site: a. Daya Bay; b. sampling area and the spatial distributions of monitoring wells, as well as the groundwater and seawater samplings; c. seepage face zone; d. spatial distributions of monitoring wells (rectangles) including LTC-Diver and sampling points (dots) along the transect from intertidal zone to subtidal zone.

    Figure  2.  Time series of groundwater levels and tide levels from May 19 to 30, 2022 at W1, W2, and W3.

    Figure  3.  Spatial distributions of physicochemical parameters and nutrients, including pH (a), salinity (b), $ {\rm{NH}}_4^ + $ (c), ${\rm{NO}}_{\rm{x}}^ -\ ({\rm{NO}}_{\rm{x}}^-={\rm{NO}}_{\rm{3}}^ - + $$ {\rm{NO}}_{\rm{2}}^ - )$ (d), dissolved inorganic silicon (DSi) (e), and dissolved inorganic phosphorous (DIP) (f). The black dots mean the sampling points of groundwater.

    Figure  4.  Spatial distributions of metal elements, including As (a), Ba (b), Cr (c), Cu (d), Fe (e), Mn (f), Ni (g), Pb (h), and Zn (i). The black dots mean the sampling points of groundwater.

    Figure  5.  Principal component analysis (PCA) bi-plot for groundwater samples of upper intertidal (n = 9), seepage face (n = 9) and subtidal zones (n = 9). The samples of three zones have been divided by different color. n means the number of samples.

    Figure  6.  The Pearson correlations analysis for physicochemical parameters, nutrients, and metal elements of groundwater samples in three zones. Sal. means an abbreviation for salinity.

    Figure  7.  The nutrient fluxes from submarine groundwater discharge (SGD) and inflow (a); metal element fluxes derived by SGD and inflow (b).

    Figure  8.  Pollution factor index of metal elements (Cr, Ni, Zn, Cu, As, and Pb) in the groundwater among three zones.

    Table  1.   The nutrient fluxes derived by submarine groundwater discharge (SGD) in the Daya Bay in comparison with other studies

    Case studiesSGD/(cm·d−1)Fluxes of nutrients/(mmol·m−2·d−1)Reference
    $ {\rm{NO}}_{\rm{x}}^ - $$ {\rm{NH}}_4^ + $DINDIPDSi
    STE in Daya Bay, China30.135.090.245.330.2216.20this study
    Daya Bay, China1.18±0.43NDND0.2850.0152.66Wang et al. (2018a)
    Daya Bay, China5.3NDND3.620.1NDGao et al. (2018)
    Daya Bay, China28.2–30.9ND0.656ND0.00121.794Wang et al. (2017)
    Jiaozhou Bay, China2.12–5.59NDND4.360.042.49Zhang et al. (2020)
    Sanya Bay, China(4.3±2.1)–(7.8±4.1)NDND8.540.113.85Wang et al. (2018b)
    Bohai Bay, China7.3NDND7.780.159.26Wang et al. (2020)
    Kakinada Bay, India17.93NDND121.219.50199.00Rengarajan and Sarma (2015)
    Masan Bay, Korea6.1–7.1NDND1.16–6.010.028–0.1400.74–3.84Lee et al. (2009)
    Note: STE: subterranean estuaries; ND: no data; DIN: dissolved inorganic nitrogen; DIP: dissolved inorganic phosphorous; DSi: dissolved inorganic silicon.
    下载: 导出CSV

    Table  2.   The metal fluxes derived by submarine groundwater discharge (SGD) in the Daya Bay in comparison with other studies

    Case studiesSGD/(cm·d−1)Fluxes of metal elements/(μmol·m−2·d−1)Reference
    CrMnFeNiCuZnAsBaPb
    STE in Daya Bay, China30.1327.88143.411325.0610.10140.21304.066.2537.3884.49this study
    Bangdu, Korea24.38ND2.52702.40.7NDNDNDNDJeong et al. (2012)
    Jiaozhou Bay, China0.0036–7.611.92NDNDND5.873.850.13ND1.59Qu et al. (2020)
    Greater Bay , China4.570.81NDND0.480.710.462.2ND0.03Luo et al. (2022)
    Hailing Island, China5–101.37ND70.880.20.3724.941.8810.450.082Li et al. (2022)
    Bohai Bay2.00–4.811.69–4.63750.0–1687.5125–375NDND18.75–51.25NDNDNDWang et al. (2019)
    Note: STE: subterranean estuaries; ND: no data.
    下载: 导出CSV
  • Abou Zakhem B, Hafez R. 2015. Heavy metal pollution index for groundwater quality assessment in Damascus Oasis, Syria. Environmental Earth Sciences, 73(10): 6591–6600. doi: 10.1007/s12665-014-3882-5
    Babu D S S, Khandekar A, Bhagat C, et al. 2021. Evaluation, effect and utilization of submarine groundwater discharge for coastal population and ecosystem: a special emphasis on Indian coastline. Journal of Environmental Management, 277: 111362. doi: 10.1016/j.jenvman.2020.111362
    Burnett W C, Aggarwal P K, Aureli A, et al. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 367(2–3): 498–543
    Burnett W C, Bokuniewicz H, Huettel M, et al. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1–2): 3–33
    Cao Feifei, Kong Linghao, Yang Liyuan, et al. 2015. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China. Environmental Science and Pollution Research, 22(17): 13496–13505. doi: 10.1007/s11356-015-4618-0
    Chen Guangquan, Xu Bochao, Zhao Shibin, et al. 2022. Submarine groundwater discharge and benthic biogeochemical zonation in the Huanghe River Estuary. Acta Oceanologica Sinica, 41(1): 11–20. doi: 10.1007/s13131-021-1882-3
    Chen Xiaogang, Du Jinzhou, Yu Xueqing, et al. 2021. Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary. Acta Oceanologica Sinica, 40(8): 32–43. doi: 10.1007/s13131-021-1797-z
    Dun Yu, Ling Junhong, Wang Rui, et al. 2022. Hydrochemical evolution and nitrogen behaviors in coastal groundwater suffered from seawater intrusion and anthropogenic inputs. Frontiers in Marine Science, 9: 945330. doi: 10.3389/fmars.2022.945330
    Gao Jingyan, Wang Xuejing, Zhang Yan, et al. 2018. Estimating submarine groundwater discharge and associated nutrient inputs into Daya Bay during spring using radium isotopes. Water Science and Engineering, 11(2): 120–130. doi: 10.1016/j.wse.2018.06.002
    Garcia-Orellana J, Cochran J K, Bokuniewicz H, et al. 2014. Evaluation of 224Ra as a tracer for submarine groundwater discharge in Long Island Sound (NY). Geochimica et Cosmochimica Acta, 141: 314–330. doi: 10.1016/j.gca.2014.05.009
    Garcia-Solsona E, Garcia-Orellana J, Masqué P, et al. 2010. An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry, 97(2): 211–229
    Guo Xueru, Zuo Rui, Meng Li, et al. 2018. Seasonal and spatial variability of anthropogenic and natural factors influencing groundwater quality based on source apportionment. International Journal of Environmental Research and Public Health, 15(2): 279. doi: 10.3390/ijerph15020279
    Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8): 975–1001. doi: 10.1016/0043-1354(80)90143-8
    Ho Peng, Shim M J, Howden S D, et al. 2019. Temporal and spatial distributions of nutrients and trace elements (Ba, Cs, Cr, Fe, Mn, Mo, U, V and Re) in Mississippi coastal waters: influence of hypoxia, submarine groundwater discharge, and episodic events. Continental Shelf Research, 175: 53–69. doi: 10.1016/j.csr.2019.01.013
    Hu Bangqi, Li Guogang, Li Jun, et al. 2013. Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China. Environmental Science and Pollution Research, 20(6): 4099–4110. doi: 10.1007/s11356-012-1332-z
    Jeong J, Kim G, Han S. 2012. Influence of trace element fluxes from submarine groundwater discharge (SGD) on their inventories in coastal waters off volcanic island, Jeju, Korea. Applied Geochemistry, 27(1): 37–43. doi: 10.1016/j.apgeochem.2011.08.014
    Jiang Shan, Zhang Yixue, Jin Jie, et al. 2020. Organic carbon in a seepage face of a subterranean estuary: turnover and microbial interrelations. Science of the Total Environment, 725: 138220. doi: 10.1016/j.scitotenv.2020.138220
    Kim I, Kim G. 2015. Role of colloids in the discharge of trace elements and rare earth elements from coastal groundwater to the ocean. Marine Chemistry, 176: 126–132. doi: 10.1016/j.marchem.2015.08.009
    Lee Y W, Hwang D W, Kim G, et al. 2009. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Science of the Total Environment, 407(9): 3181–3188. doi: 10.1016/j.scitotenv.2008.04.013
    Li L, Barry D A, Stagnitti F, et al. 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research, 35(11): 3253–3259. doi: 10.1029/1999WR900189
    Li Hailong, Boufadel M C, Weaver J W. 2008. Tide-induced seawater–groundwater circulation in shallow beach aquifers. Journal of Hydrology, 352(1–2): 211–224
    Li Gang, Li Hailong, Wang Xuejing, et al. 2018. Groundwater-surface water exchanges and associated nutrient fluxes in Dan’ao Estuary, Daya Bay, China. Continental Shelf Research, 166: 83–91. doi: 10.1016/j.csr.2018.06.014
    Li Zhenyang, Pan Feng, Xiao Kai, et al. 2022. An integrated study of the spatiotemporal character, pollution assessment, and migration mechanism of heavy metals in the groundwater of a subtropical mangrove wetland. Journal of Hydrology, 612: 128251. doi: 10.1016/j.jhydrol.2022.128251
    Li Hailong, Sun Pingping, Chen Shi, et al. 2010. A falling-head method for measuring intertidal sediment hydraulic conductivity. Groundwater, 48(2): 206–211. doi: 10.1111/j.1745-6584.2009.00638.x
    Liu Yi, Jiao Jiujimmy, Cheng Hokwan. 2018a. Tracing submarine groundwater discharge flux in Tolo Harbor, Hong Kong (China). Hydrogeology Journal, 26(6): 1857–1873. doi: 10.1007/s10040-018-1736-z
    Liu Yi, Liang Wenzhao, Jiao Jiujimmy. 2018b. Seasonality of nutrient flux and biogeochemistry in an intertidal aquifer. Journal of Geophysical Research: Oceans, 123(9): 6116–6135. doi: 10.1029/2018JC014197
    Luo Manhua, Zhang Yan, Li Hailong, et al. 2022. Pollution assessment and sources of dissolved heavy metals in coastal water of a highly urbanized coastal area: the role of groundwater discharge. Science of the Total Environment, 807: 151070. doi: 10.1016/j.scitotenv.2021.151070
    Ma Qian, Li Hailong, Wang Xuejing, et al. 2015. Estimation of seawater–groundwater exchange rate: case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China). Hydrogeology Journal, 23(2): 265–275. doi: 10.1007/s10040-014-1196-z
    Mayfield K K, Eisenhauer A, Santiago Ramos D P, et al. 2021. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nature Communication, 12(1): 148. doi: 10.1038/s41467-020-20248-3
    Millward G E, Liu Y P. 2003. Modelling metal desorption kinetics in estuaries. Science of the Total Environment, 314–316: 613–623
    Montluçon D, Sañudo-Wilhelmy S A. 2001. Influence of net groundwater discharge on the chemical composition of a coastal environment:  Flanders Bay, Long Island, New York. Environmental Science & Technology, 35(3): 480–486
    Moore W S. 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry, 65(1–2): 111–125
    Moore W S. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry, 66(1–2): 75–93
    Price R M, Swart P K, Fourqurean J W. 2006. Coastal groundwater discharge—an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia, 569(1): 23–36. doi: 10.1007/s10750-006-0120-5
    Qu Wenjing, Li Hailong, Huang Hao, et al. 2017. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China. Journal of Hydrology, 555: 185–197. doi: 10.1016/j.jhydrol.2017.10.014
    Qu Shuyi, Wu Weihua, Nel W, et al. 2020. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Science of the Total Environment, 708: 134572. doi: 10.1016/j.scitotenv.2019.134572
    Rengarajan R, Sarma V V S S. 2015. Submarine groundwater discharge and nutrient addition to the coastal zone of the Godavari Estuary. Marine Chemistry, 172: 57–69. doi: 10.1016/j.marchem.2015.03.008
    Rodellas V, Garcia-Orellana J, Tovar-Sánchez A, et al. 2014. Submarine groundwater discharge as a source of nutrients and trace metals in a Mediterranean bay (Palma Beach, Balearic Islands). Marine Chemistry, 160: 56–66. doi: 10.1016/j.marchem.2014.01.007
    Sanders C J, Santos I R, Barcellos R, et al. 2012. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise?. Continental Shelf Research, 43: 86–94. doi: 10.1016/j.csr.2012.04.015
    Santos I R S, Burnett W C, Chanton J, et al. 2008. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnology and Oceanography, 53(2): 705–718. doi: 10.4319/lo.2008.53.2.0705
    Santos I R, Burnett W C, Dittmar T, et al. 2009. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochimica et Cosmochimica Acta, 73(5): 1325–1339. doi: 10.1016/j.gca.2008.11.029
    Shum K T, Sundby B. 1996. Organic matter processing in continental shelf sediments—the subtidal pump revisited. Marine Chemistry, 53(1–2): 81–87
    Sun Xia, Li Baoshi, Liu Xuanli, et al. 2020. Spatial variations and potential risks of heavy metals in seawater, sediments, and living organisms in Jiuzhen Bay, China. Journal of Chemistry, 2020: 7971294
    Sun Zhigao, Mou Xiaojie, Tong Chuan, et al. 2015. Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River Estuary, China. CATENA, 126: 43–52. doi: 10.1016/j.catena.2014.10.037
    Syvitski J P M, Vörösmarty C J, Kettner A J, et al. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720): 376–380. doi: 10.1126/science.1109454
    Wang Xuejing, Li Hailong, Yang Jinzhong, et al. 2017. Nutrient inputs through submarine groundwater discharge in an embayment: a radon investigation in Daya Bay, China. Journal of Hydrology, 551: 784–792. doi: 10.1016/j.jhydrol.2017.02.036
    Wang Qianqian, Li Hailong, Zhang Yan, et al. 2019. Evaluations of submarine groundwater discharge and associated heavy metal fluxes in Bohai Bay, China. Science of the Total Environment, 695: 133873. doi: 10.1016/j.scitotenv.2019.133873
    Wang Qianqian, Li Hailong, Zhang Yan, et al. 2020. Submarine groundwater discharge and its implication for nutrient budgets in the western Bohai Bay, China. Journal of Environmental Radioactivity, 212: 106132. doi: 10.1016/j.jenvrad.2019.106132
    Wang Xuejing, Li Hailong, Zheng Chunmiao, et al. 2018a. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica et Cosmochimica Acta, 225: 52–65. doi: 10.1016/j.gca.2018.01.029
    Wang Xilong, Su Kaijun, Du Juan, et al. 2021a. Estimating submarine groundwater discharge at a subtropical river estuary along the Beibu Gulf, China. Acta Oceanologica Sinica, 40(9): 13–22. doi: 10.1007/s13131-021-1862-7
    Wang Guizhi, Wang Shuling, Wang Zhangyong, et al. 2018b. Significance of submarine groundwater discharge in nutrient budgets in tropical Sanya Bay, China. Sustainability, 10(2): 380. doi: 10.3390/su10020380
    Wang Qianqian, Wang Xuejing, Xiao Kai, et al. 2021b. Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes. Geoscience Frontiers, 12(5): 101223. doi: 10.1016/j.gsf.2021.101223
    Wang Hua, Zhou Yiyi, Wang Xiao. 2016. Transport dynamics of Cr and Zn between deposited sediment and overlying water. CLEAN-Soil, Air, Water, 44(11): 1453–1460
    Wen Xiaohu, Lu Jian, Wu Jun, et al. 2019. Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, 652: 267–277. doi: 10.1016/j.scitotenv.2018.10.250
    Xiao Kai, Wu Jiapeng, Li Hailong, et al. 2018. Nitrogen fate in a subtropical mangrove swamp: potential association with seawater-groundwater exchange. Science of the Total Environment, 635: 586–597. doi: 10.1016/j.scitotenv.2018.04.143
    Xu Bochao, Cardenas M B, Santos I R, et al. 2022. Closing the global Marine 226Ra budget reveals the biological pump as a dominant removal flux in the upper ocean. Geophysical Research Letters, 49(12): e2022GL098087
    Yin Xianqiang, Gao Bin, Ma L Q, et al. 2010. Colloid-facilitated Pb transport in two shooting-range soils in Florida. Journal of Hazardous Materials, 177(1–3): 620–625
    Zhang Yan, Santos I R, Li Hailong, et al. 2020. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales. Geochimica et Cosmochimica Acta, 290: 201–215. doi: 10.1016/j.gca.2020.08.026
    Zhong Qiangqiang, Li Linwei, Puigcorbé V, et al. 2022. Contrasting behaviors of 210Po, 210Pb and 234Th in the East China Sea during a severe red tide: enhanced scavenging and promoted fractionation. Acta Oceanologica Sinica, 41(8): 5–21. doi: 10.1007/s13131-021-1958-0
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  92
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-05
  • 录用日期:  2023-05-11
  • 网络出版日期:  2023-06-16
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回