Development of SNP parentage assignment techniques in the yellowfin seabream Acanthopagrus latus

Hongbo Zhao Liangmin Huang Jing Zhang Songyuan You Qingmin Zeng Xiande Liu

Hongbo Zhao, Liangmin Huang, Jing Zhang, Songyuan You, Qingmin Zeng, Xiande Liu. Development of SNP parentage assignment techniques in the yellowfin seabream Acanthopagrus latus[J]. Acta Oceanologica Sinica, 2024, 43(2): 151-155. doi: 10.1007/s13131-023-2221-7
Citation: Hongbo Zhao, Liangmin Huang, Jing Zhang, Songyuan You, Qingmin Zeng, Xiande Liu. Development of SNP parentage assignment techniques in the yellowfin seabream Acanthopagrus latus[J]. Acta Oceanologica Sinica, 2024, 43(2): 151-155. doi: 10.1007/s13131-023-2221-7

doi: 10.1007/s13131-023-2221-7

Development of SNP parentage assignment techniques in the yellowfin seabream Acanthopagrus latus

Funds: Fujian Province science and technology plan project under contract No.2023N0011.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Success rates of assignment for different numbers of SNPs at the 95% confidence level for the model where the gender of the parents is known.

    Figure  2.  Success rates of assignment for different numbers of SNPs at the 95% confidence level for the model where the gender of the parents is unknown.

    Table  1.   Parental combinations and number of samples per family

    Family Id Female parent Male parent Number of offspring taken
    J01 d01 s01 4
    J05 d05 s02 5
    J06 d06 s02 5
    J09 d09 s03 3
    J10 d10 s04 6
    J11 d11 s04 4
    J17 d17 s07 4
    J18 d18 s07 7
    J19 d19 s07 5
    J20 d20 s08 6
    J23 d23 s09 6
    J25 d25 s09 5
    J26 d26 s10 6
    J30 d30 s11 6
    Total 14 9 72
    下载: 导出CSV

    Table  2.   SNP annotation information statistics in A. latus

    Category Number of SNP Proportion of total /%
    Exonic 579 057 4.02
    Exonic Stop gain 2 310 0.02
    Exonic Stop loss 247 0.00
    Exonic Synonymous 337 298 2.34
    Exonic Non-synonymous 239 202 1.66
    Intronic 7 161 298 49.76
    Splicing 1 915 0.01
    Upstream 349 101 2.43
    Downstream 342 049 2.38
    Upstream/Downstream 82 478 0.57
    Intergenic 3 836 766 26.66
    Others 2 040 243 14.18
    Total 14 392 738
    下载: 导出CSV

    Table  3.   Parentage assignment results of five sets of SNPs (with 95 % confidence)

    Number
    of SNP
    Model of known parental gender Model of unknown parental gender
    Assignment success
    rates of male parent
    Assignment success
    rates of female parent
    Assignment success
    rates of parent pair
    Assignment success
    rates of single parent
    Assignment success
    rates of parent pair
    46 66.67% 47.22% 37.50% 68.06% 19.44%
    87 91.67% 79.17% 76.39% 93.06% 62.50%
    146 97.22% 94.44% 91.67% 100% 87.50%
    205 98.61% 97.22% 95.83% 100% 90.28%
    334 100% 100% 100% 100% 100%
    Notes: Grey shading indicates the best combination of markers.
    下载: 导出CSV
  • Abadía-Cardoso A, Anderson E C, Pearse D E, et al. 2013. Large-scale parentage analysis reveals reproductive patterns and heritability of spawn timing in a hatchery population of steelhead ( Oncorhynchus mykiss). Molecular Ecology, 22(18): 4733–4746, doi: 10.1111/mec.12426
    Anderson E C, Garza J C. 2006. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics, 172(4): 2567–2582, doi: 10.1534/genetics.105.048074
    Flanagan S P, Jones A G. 2019. The future of parentage analysis: From microsatellites to SNPs and beyond. Molecular Ecology, 28(3): 544–567, doi: 10.1111/mec.14988
    García-Fernández C, Sánchez J A, Blanco G. 2018. SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream ( Sparus aurata). Aquaculture, 495: 582–591, doi: 10.1016/j.aquaculture.2018.06.019
    Gjedrem T, Robinson N, Rye M. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture, 350–353: 117–129, doi: 10.1016/j.aquaculture.2012.04.008
    Harlizius B, Lopes M S, Duijvesteijn N, et al. 2011. A single nucleotide polymorphism set for paternal identification to reduce the costs of trait recording in commercial pig breeding. Journal of Animal Science, 89(6): 1661–1668, doi: 10.2527/jas.2010-3347
    Hauser L, Baird M, Hilborn R, et al. 2011. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon ( Oncorhynchus nerka) population. Molecular Ecology Resources, 11(S1): 150–161, doi: 10.1111/j.1755-0998.2010.02961.x
    Holman L E, De La Serrana D G, Onoufriou A, et al. 2017. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon. Aquaculture, 476: 59–64, doi: 10.1016/j.aquaculture.2017.04.001
    Houston R D, Bean T P, Macqueen D J, et al. 2020. Harnessing genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics, 21(7): 389–409, doi: 10.1038/s41576-020-0227-y
    Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106, doi: 10.1111/j.1365-294X.2007.03089.x
    Li Heng, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1754–1760, doi: 10.1093/bioinformatics/btp324
    Liu Sixin, Palti Y, Gao Guangtu, et al. 2016. Development and validation of a SNP panel for parentage assignment in rainbow trout. Aquaculture, 452: 178–182, doi: 10.1016/j.aquaculture.2015.11.001
    Marshall T C, Slate J, Kruuk L E B, et al. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7(5): 639–655, doi: 10.1046/j.1365-294x.1998.00374.x
    Slate J, Marshall T, Pemberton J. 2000. A retrospective assessment of the accuracy of the paternity inference program CERVUS. Molecular Ecology, 9(6): 801–808, doi: 10.1046/j.1365-294x.2000.00930.x
    Steele C A, Anderson E C, Ackerman M W, et al. 2013. A validation of parentage-based tagging using hatchery steelhead in the Snake River basin. Canadian Journal of Fisheries and Aquatic Sciences, 70(7): 1046–1054, doi: 10.1139/cjfas-2012-0451
    Tokarska M, Marshall T, Kowalczyk R, et al. 2009. Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity, 103(4): 326–332, doi: 10.1038/hdy.2009.73
    Vandeputte M, Haffray P. 2014. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Frontiers in Genetics, 5: 432, doi: 10.3389/fgene.2014.00432
    Walling C A, Pemberton J M, Hadfield J D, et al. 2010. Comparing parentage inference software: reanalysis of a red deer pedigree. Molecular Ecology, 19(9): 1914–1928, doi: 10.1111/j.1365-294X.2010.04604.x
    Weinman L R, Solomon J W, Rubenstein D R. 2015. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Molecular Ecology Resources, 15(3): 502–511, doi: 10.1111/1755-0998.12330
    Xu Jian, Feng Jingyan, Peng Wenzhu, et al. 2017. Development and evaluation of a high-throughput single nucleotide polymorphism multiplex assay for assigning pedigrees in common carp. Aquaculture Research, 48(4): 1866–1876, doi: 10.1111/are.13024
    Yue Genhua, Xia Junhong. 2014. Practical considerations of molecular parentage analysis in fish. Journal of the World Aquaculture Society, 45(2): 89–103, doi: 10.1111/jwas.12107
    Zhao Honggang, Li Chao, Hargrove J S, et al. 2018. SNP marker panels for parentage assignment and traceability in the Florida bass ( Micropterus floridanus). Aquaculture, 485: 30–38, doi: 10.1016/j.aquaculture.2017.11.014
    Zheng Guobin, Zhao Hongbo, Huang Liangmin, et al. 2023. Discovery and verification of SNP in Acanthopagrus latus. Journal of Tropical Oceanography (in Chinese), 42(2): 78–86, doi: 10.11978/2022108
    Zhu Kecheng, Song Ling, Liu Baosuo, et al. 2020. Establishment of parentage determination in yellowfin seabream ( Acanthopagrus latus). Journal of Fisheries of China (in Chinese), 44(3): 351–357, doi: 10.11964/jfc.20181011480
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  28
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 录用日期:  2023-05-31
  • 网络出版日期:  2024-02-28
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回