Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015

Cuijuan Sui Lejiang Yu Alexey Yu. Karpechko Licheng Feng Shan Liu

Cuijuan Sui, Lejiang Yu, Alexey Yu. Karpechko, Licheng Feng, Shan Liu. Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015[J]. Acta Oceanologica Sinica, 2024, 43(3): 48-58. doi: 10.1007/s13131-023-2247-x
Citation: Cuijuan Sui, Lejiang Yu, Alexey Yu. Karpechko, Licheng Feng, Shan Liu. Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015[J]. Acta Oceanologica Sinica, 2024, 43(3): 48-58. doi: 10.1007/s13131-023-2247-x

doi: 10.1007/s13131-023-2247-x

Influence of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation on Antarctic surface air temperature during 1900 to 2015

Funds: The National Natural Science Foundation of China under contract No. 41976221; the National Key Scientific and Technological Infrastructure Project “Earth System Numerical Simulation Facility” (EarthLab).
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The 1900–2015 20CR (left; a, d, g, and j), 1979–2015 20CR (middle; b, e, h, and k) and 1979–2015 ERA5 (right; c, f, i, and l) surface air temperature trends in different seasons.

    Figure  2.  Variance in surface air temperature in austral summer (JFM) (a), autumn (AMJ) (b), winter (JAS) (c) and spring (OND) (d).

    Figure  3.  AMO index (top) and IPO index (down) time series during 1900–2015.

    Figure  4.  Distribution of SST anomaly of ERSST in different phases of the AMO and IPO in JFM, AMJ, JAS, and OND. The dots denote the values passing the 95% confidence level for the two-sided Student’s t-test.

    Figure  5.  Distribution of 2-m air temperature anomaly of 20CR in different phases of the AMO and IPO in JFM, AMJ, JAS, and OND. The dots denote the values passing the 95% confidence level for the two-sided Student’s t-test.

    Figure  6.  Distribution of 2-m air temperature anomaly of ERA-20C in different phases of the AMO and IPO in JFM, AMJ, JAS, and OND.

    Figure  7.  Distribution of the 10-m wind anomaly (m/s; vectors, scale in bottom right) and sea level pressure anomaly (hPa; shading, lower row) of 20CR in different phases of the AMO and IPO in AMJ. The dots denote the values passing the 95% confidence level for the two-sided Student’s t-test.

    Figure  8.  Distribution of the total cloud cover anomaly (left column) and downward longwave radiation flux anomaly at the surface (right column) of 20CR in different phases of the AMO and IPO in AMJ. The dots denote the values passing the 95% confidence level for the two-sided Student’s t-test.

    Figure  9.  Distribution of albedo anomalies (left column) and net shortwave radiation flux anomalies at the surface (right column) of 20CR in different phases of the AMO and IPO in AMJ. The dots denote the values passing the 95% confidence level for the two-sided Student’s t-test.

    Figure  10.  Anomalous surface precipitation rate (left column) and upward longwave radiation flux at the nominal top of the atmosphere anomaly (right column) from 20CR data in AMJ. The dots denote the values passing the 95% confidence level for the two-sided Student’s t-test.

    Figure  11.  The 200 hPa divergent wind anomaly (vectors), Rossby wave source in AMJ (shading) (left column) and the 200 hPa height anomaly (shading) and anomalous wave activity flux (vectors) of 20CR in AMJ (right column).

    Table  1.   Years in different phases of the AMO and IPO from 1900–2015

    Month Years in different phases
    +AMO+IPO –AMO–IPO +AMO–IPO –AMO+IPO
    JFM

    1929–1933
    1938–1942
    1908–1912
    1914–1926
    1964–1978
    1934–1937
    1943–1963
    1998–2015
    1900–1907/1913
    1927–1928
    1979–1997
    AMJ

    1928–1933
    1938–1942
    1908–1912
    1914–1925
    1963–1978
    1934–1937
    1943–1962
    1998–2015
    1900–1907/1913
    1926–1927
    1979–1997
    JAS

    1928–1933
    1937–1942/1997
    1908–1912
    1914–1925
    1963–1977
    1934–1036
    1943–1962
    1998–2015
    1900–1907/1913
    1926–1927
    1978–1996
    OND

    1928–1932
    1937–1941
    1908–1925
    1963–1977
    1933–1936
    1942–1962
    1997–2015
    1900–1907
    1926–1927
    1978–1996
    下载: 导出CSV

    Table  2.   Correlation coefficients of surface temperature anomalies between ERA-20C and 20CR in different phases of the AMO and IPO

    Month Correlation coefficient
    +AMO+IPO –AMO–IPO +AMO–IPO –AMO+IPO
    JFM 0.62* 0.77* 0.86* 0.72*
    AMJ 0.93* 0.01 0.63* 0.74*
    JAS 0.79* 0.26* 0.69* 0.72*
    OND 0.62* 0.41* 0.64* 0.73*
    Note: Asterisk (*) denotes above 99% confidence level.
    下载: 导出CSV
  • Bromwich D H, Nicolas J P, Monaghan A J, et al. 2013. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2): 139–145, doi: 10.1038/ngeo1671
    Ding Qinghua, Steig E J. 2013. Temperature change on the Antarctic Peninsula linked to the tropical Pacific. Journal of Climate, 26(19): 7570–7585, doi: 10.1175/JCLI-D-12-00729.1
    Ding Qinghua, Steig E J, Battisti D S, et al. 2011. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience, 4(6): 398–403, doi: 10.1038/ngeo1129
    Enfield D B, Mestas-Nuñez A M, Trimble P J. 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10): 2077–2080, doi: 10.1029/2000GL012745
    Fogt R L, Bromwich D H. 2006. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. Journal of Climate, 19(6): 979–997, doi: 10.1175/Jcli3671.1
    Fogt R L, Bromwich D H, Hines K M. 2011. Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dynamics, 36(7/8): 1555–1576, doi: 10.1007/s00382-010-0905-0
    Garfinkel C I, Hartmann D L. 2007. Effects of the El Niño-Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere. Journal of Geophysical Research: Atmospheres, 112(D19): D19112, doi: 10.1029/2007JD00 8481, doi: 10.1029/2007JD008481
    Henley B J, Gergis J, Karoly D J, et al. 2015. A tripole index for the Interdecadal Pacific Oscillation. Climate Dynamics, 45(11–12): 3077–3090, doi: 10.1007/s00382-015-2525-1
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, doi: 10.1002/qj.3803
    Hobbs W R, Massom R, Stammerjohn S, et al. 2016. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143: 228–250, doi: 10.1016/j.gloplacha.2016.06.008
    Hosking J S, Orr A, Marshall G J, et al. 2013. The influence of the Amundsen-Bellingshausen seas low on the climate of West Antarctica and its representation in coupled climate model simulations. Journal of Climate, 26(17): 6633–6648, doi: 10.1175/JCLI-D-12-00813.1
    Huang Boyin, Thorne P W, Banzon V F, et al. 2017. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. Journal of Climate, 30(20): 8179–8205, doi: 10.1175/JCLI-D-16-0836.1
    Jones M E, Bromwich D H, Nicolas J P, et al. 2019. Sixty years of widespread warming in the southern middle and high latitudes (1957–2016). Journal of Climate, 32(20): 6875–6898, doi: 10.1175/JCLI-D-18-0565.1
    Klein F, Abram N J, Curran M A J, et al. 2019. Assessing the robustness of Antarctic temperature reconstructions over the past 2 millennia using pseudoproxy and data assimilation experiments. Climate of the Past, 15(2): 661–684, doi: 10.5194/cp-15-661-2019
    Kren A C, Marsh D R, Smith A K, et al. 2016. Wintertime Northern Hemisphere response in the stratosphere to the Pacific decadal oscillation using the whole atmosphere community climate model. Journal of Climate, 29(3): 1031–1049, doi: 10.1175/JCLI-D-15-0176.1
    Kreutz K J, Mayewski P A, Pittalwala I I, et al. 2000. Sea level pressure variability in the Amundsen Sea region inferred from a West Antarctic glaciochemical record. Journal of Geophysical Research: Atmospheres, 105(D3): 4047–4059, doi: 10.1029/1999JD901069
    Li Xichen, Cai Wenju, Meehl G A, et al. 2021. Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2(10): 680–698., doi: 10.1038/s43017-021-00204-5
    Li Guangliang, Feng Licheng, Zhuang Wei, et al. 2024. Differences in spring precipitation over southern China associated with multiyear La Niña events. Acta Oceanologica Sinica, 43(2):1–10, doi: 10.1007/s13131-023-2147-0
    Li Xichen, Gerber E P, Holland D M, et al. 2015. A Rossby wave bridge from the tropical Atlantic to West Antarctica. Journal of Climate, 28(6): 2256–2273, doi: 10.1175/JCLI-D-14-00450.1
    Li Xichen, Holland D M, Gerber E P, et al. 2014. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505(7484): 538–542, doi: 10.1038/nature12945
    Liu Na, Wang Hui, Ling Tiejun, et al. 2013. The influence of ENSO on sea surface temperature variations in the China seas. Acta Oceanologica Sinica, 32(9): 21–29, doi: 10.1007/s13131-013-0348-7
    Marshall G J, Thompson D W J. 2016. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. Journal of Geophysical Research: Atmospheres, 121(7): 3276–3289, doi: 10.1002/2015JD024665
    Meehl G A, Arblaster J M, Bitz C M, et al. 2016. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nature Geoscience, 9(8): 590–595, doi: 10.1038/ngeo2751
    Nicolas J P, Bromwich D H. 2014. New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses. Journal of Climate, 27(21): 8070–8093, doi: 10.1175/JCLI-D-13-00733.1
    Rao Jian, Ren Rongcai. 2018. Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Climate Dynamics, 51(5/6): 2079–2096,doi: 10.1007/s00382-017-3998-x, doi: 10.1007/s00382-017-3998-x
    Raphael M N, Marshall G J, Turner J, et al. 2016. The Amundsen Sea low: variability, change, and impact on Antarctic climate. Bulletin of the American Meteorological Society, 97(1): 111–121, doi: 10.1175/BAMS-D-14-00018.1
    Sardeshmukh P D, Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences, 45(7): 1228–1251, doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
    Schneider D P, Deser C, Okumura Y. 2012. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dynamics, 38(1/2): 323–347, doi: 10.1007/s00382-010-0985-x
    Schneider D P, Fogt R L. 2018. Artifacts in century-length atmospheric and coupled reanalyses over Antarctica due to historical data availability. Geophysical Research Letters, 45(2): 964–973, doi: 10.1002/2017GL076226
    Simpkins G R, Mcgregor S, Taschetto A S, et al. 2014. Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. Journal of Climate, 27(13): 4923–4936, doi: 10.1175/JCLI-D-13-00615.1
    Simpkins G R, Peings Y, Magnusdottir G. 2016. Pacific influences on tropical Atlantic teleconnections to the Southern Hemisphere high latitudes. Journal of Climate, 29(18): 6425–6444, doi: 10.1175/JCLI-D-15-0645.1
    Slivinski L C, Compo G P, Sardeshmukh P D, et al. 2021. An evaluation of the performance of the twentieth century reanalysis version 3. Journal of Climate, 34(4): 1417–1438, doi: 10.1175/JCLI-D-20-0505.1
    Slivinski L C, Compo G P, Whitaker J S, et al. 2019. Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 145(724): 2876–2908, doi: 10.1002/qj.3598
    Song K, Son S W. 2018. Revisiting the ENSO-SSW relationship. Journal of Climate, 31(6): 2133–2143, doi: 10.1175/JCLI-D-17-0078.1
    Stammerjohn S E, Martinson D G, Smith R C, et al. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research: Oceans, 113(C3): C03S90, doi: 10.1029/2007jc004269
    Steig E J, Schneider D P, Rutherford S D, et al. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(7228): 459–462, doi: 10.1038/nature07669
    Thompson D W J, Solomon S. 2002. Interpretation of recent Southern Hemisphere climate change. Science, 296(5569): 895–899, doi: 10.1126/science.1069270
    Turner J, Lu Hua, White I, et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535(7612): 411–415, doi: 10.1038/nature18645
    Turner J, Phillips T, Hosking J S, et al. 2013. The Amundsen sea low. International Journal of Climatology, 33(7): 1818–1829, doi: 10.1002/joc.3558
    Wallace J M, Rasmusson E M, Mitchell T P, et al. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. Journal of Geophysical Research: Oceans, 103(C7): 14241–14259, doi: 10.1029/97JC02905
    Wang Guomin, Hendon H H, Arblaster J M, et al. 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nature Communications, 10(1): 13, doi: 10.1038/s41467-018-07689-7
    Wang Ya, Huang Gang, Hu Kaiming. 2020. Internal variability in multidecadal trends of surface air temperature over Antarctica in austral winter in model simulations. Climate Dynamics, 55(9–10): 2835–2847, doi: 10.1007/s00382-020-05412-1
    Xie Fei, Li J, Tian Wenshou, et al. 2012. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12(11): 5259–5273, doi: 10.5194/acp-12-5259-2012
    Yu Lejiang, Zhong Shiyuan, Sun Bo. 2022. Synchronous variation patterns of monthly sea ice anomalies at the Arctic and Antarctic. Journal of Climate, 35(9): 2823–2847, doi: 10.1175/JCLI-D-21-0756.1
    Yu Lejiang, Zhong Shiyuan, Winkler J A, et al. 2017. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Scientific Reports, 7: 45804, doi: 10.1038/srep45804
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  39
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 录用日期:  2023-08-24
  • 网络出版日期:  2024-03-12
  • 刊出日期:  2024-03-25

目录

    /

    返回文章
    返回