[1] Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annual Review of Marine Science, 3:401-425, doi: 10.1146/annurev-marine-120709-142731
[2] Arnosti C, Bell C, Moorhead D L, et al. 2014. Extracellular enzymes in terrestrial, freshwater, and marine environments:perspectives on system variability and common research needs. Biogeochemistry, 117(1):5-21, doi: 10.1007/s10533-013-9906-5
[3] Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(10):782-791, doi: 10.1038/nrmicro1747
[4] Boetius A, Lochte K. 1994. Regulation of microbial enzymatic degradation of OM in deep-sea sediments. Marine Ecology Progress, 104:299-307, doi: 10.3354/meps104299
[5] Bridoux M C, Neibauer J, Ingalls A E, et al. 2015. Suspended marine particulate proteins in coastal and oligotrophic waters. Journal of Marine Systems, 143:39-48, doi: 10.1016/j.jmarsys.2014.10.014
[6] Chen Xiulan, Xie Binbin, Bian Fei, et al. 2009. Ecological function of myroilysin, a novel bacterial M12 metalloprotease with elastinolytic activity and a synergistic role in collagen hydrolysis, in biodegradation of deep-sea high-molecular-weight organic nitrogen. Applied and Environmental Microbiology, 75(7):1838-1844, doi: 10.1128/AEM.02285-08
[7] Chen Xiulan, Xie Binbin, Lu Jingtao, et al. 2007. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913:catalytic and structural properties of deseasin MCP-01. Microbiology, 153(7):2116-2125, doi: 10.1099/mic.0.2007/006056-0
[8] Chen Xiulan, Zhang Yuzhong, Gao Peiji, et al. 2003. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Marine Biology, 143(5):989-993, doi: 10.1007/s00227-003-1128-2
[9] Chenna R, Sugawara H, Koike T, et al. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13):3497-3500, doi: 10.1093/nar/gkg500
[10] Fabiano M, Danovaro R. 1998. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the ross sea (Antarctica). Applied and Environmental Microbiology, 64(10):3838-3845
[11] Gao Xiang, Wang Jue, Yu Daqi, et al. 2010. Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proceedings of the National Academy of Sciences of the United States of America, 107(41):17569-17574, doi: 10.1073/pnas.1005681107
[12] Geng Ce, Nie Xiangtao, Tang Zhichao, et al. 2016. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6:25012, doi: 10.1038/srep25012
[13] He Hailun, Guo Jun, Chen Xiulan, et al. 2012. Structural and functional characterization of mature forms of metalloprotease E495 from Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. PLoS One, 7(4):e35442, doi: 10.1371/journal.pone.0035442
[14] Herbert R A. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews, 23(5):563-590, doi: 10.1111/j.1574-6976.1999.tb00414.x
[15] Jørgensen B B, Boetius A. 2007. Feast and famine-microbial life in the deep-sea bed. Nature Reviews Microbiology, 5(10):770-781, doi: 10.1038/nrmicro1745
[16] Jung S Y, Jung Y T, Oh T K, et al. 2007. Photobacterium lutimaris sp. nov., isolated from a tidal flat sediment in Korea. International Journal of Systematic and Evolutionary Microbiology, 57(2):332-336, doi: 10.1099/ijs.0.64580-0
[17] Kessler E, Safrin M, Olson J C, et al. 1993. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. Journal of Biological Chemistry, 268(10):7503-7508
[18] Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2):111-120, doi: 10.1007/BF01731581
[19] Li Huijuan, Tang Bailu, Shao Xuan, et al. 2016. Characterization of a new S8 serine protease from marine sedimentary Photobacterium sp. A5-7 and the function of its protease-associated domain. Frontiers in Microbiology, 7:2016, doi: 10.3389/fmicb.2016.02016
[20] Li Yan, Wu Chaoya, Zhou Mingyang, et al. 2017. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Frontiers in Microbiology, 8:405, doi: 10.3389/fmicb.2017.00405
[21] Lloyd K G, Schreiber L, Petersen D G, et al. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496(7444):215-218, doi: 10.1038/nature12033
[22] Long R A, Azam F. 2001. Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Mircobiology, 67(11):4975-4983, doi: 10.1128/AEM.67.11.4975-4983.2001
[23] Matsuyama H, Sawazaki K, Minami H, et al. 2014. Pseudoalteromonas shioyasakiensis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 64(1):101-106, doi: 10.1099/ijs.0.055558-0
[24] Moore E K, Harvey H R, Faux J F, et al. 2014. Electrophoretic extraction and proteomic characterization of proteins buried in marine sediments. Chromatography, 1(4):176-193, doi: 10.3390/chromatography1040176
[25] Nelson P N, Baldock J A. 2005. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry, 72(1):1-34, doi: 10.1007/s10533-004-0076-3
[26] Olivera N L, Sequeiros C, Nievas M L. 2007. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 11(3):517-526, doi: 10.1007/s00792-007-0064-3
[27] Patel A B, Fukami K, Nishijima T. 2001. Extracellular proteolytic activity in the surface sediment of a eutrophic inlet. Microbes and Environments, 16(1):25-35, doi: 10.1264/jsme2.2001.25
[28] Poremba K. 1995. Hydrolytic enzymatic activity in deep-sea sediments. FEMS Microbiology Ecology, 16(3):213-221, doi: 10.1111/fem.1995.16.issue-3
[29] Qin Qilong, Zhang Xiying, Wang Xumin, et al. 2010. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics, 11:247, doi: 10.1186/1471-2164-11-247
[30] Ran Liyuan, Su Hainan, Zhao Guoyan, et al. 2013. Structural and mechanistic insights into collagen degradation by a bacterial collagenolytic serine protease in the subtilisin family. Molecular Microbiology, 90(5):997-1010, doi: 10.1111/mmi.12412
[31] Ran Liyuan, Su Hainan, Zhou Mingyang, et al. 2014. Characterization of a novel subtilisin-like protease myroicolsin from deep sea bacterium Myroides profundi D25 and molecular insight into its collagenolytic mechanism. Journal of Biological Chemistry, 289(9):6041-6053, doi: 10.1074/jbc.M113.513861
[32] Rawlings N D, Barrett A J, Thomas P D, et al. 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 46(D1):D624-D632, doi: 10.1093/nar/gkx1134
[33] Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web server issue):W320-W324, doi: 10.1093/nar/gku316
[34] Saitou N, Nei M. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, doi: 10.1093/oxfordjournals.molbev.a040454
[35] Schindler C A, Schuhardt V T. 1964. Lysostaphin:A new bacteriolytic agent for the Staphylococcus. Proceedings of the National Academy of Sciences of the United States of America, 51(3):414-421, doi: 10.1073/pnas.51.3.414
[36] Talbot V, Bianchi M. 1997. Bacterial proteolytic activity in sediments of the Subantarctic Indian Ocean sector. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 44(5):1069-1084, doi: 10.1016/S0967-0645(96)00107-5
[37] Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739, doi: 10.1093/molbev/msr121
[38] Tsuboi S, Yamamura S, Imai A, et al. 2014. Linking temporal changes in bacterial community structures with the detection and phylogenetic analysis of neutral metalloprotease genes in the sediments of a hypereutrophic lake. Microbes and Environments, 29(3):314-321, doi: 10.1264/jsme2.me14064
[39] Yan Bingqiang, Chen Xiulan, Hou Xiaoyan, et al. 2009. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913:cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles, 13(4):725-733, doi: 10.1007/s00792-009-0263-1
[40] Yang Xiangsheng, Chen Xinglin, Xu Xianzhong, et al. 2011. Cold-adaptive alkaline protease from the psychrophilic Planomicrobium sp. 547:enzyme characterization and gene cloning. Advances in Polar Science, 22(1):49-54, doi: 10.3724/SP.J.1085.2011.00049
[41] Yang Jian, Li Jie, Mai Zhimao, et al. 2013. Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. Journal of Bioscience and Bioengineering, 115(6):628-632, doi: 10.1016/j.jbiosc.2012.12.013
[42] Zhang Xiying, Han Xiaoxu, Chen Xiulan, et al. 2015. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Frontiers in Microbiology, 6:1021, doi: 10.3389/fmicb.2015.01021
[43] Zhao Huilin, Chen Xiulan, Xie Binbin, et al. 2012. Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6-2:cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. Journal of Biological Chemistry, 287(47):39710-39720, doi: 10.1074/jbc.M112.405076
[44] Zhao Guoyan, Chen Xiulan, Zhao Huilin, et al. 2008. Hydrolysis of insoluble collagen by deseasin MCP-01 from deep-sea Pseudoalteromonas sp. SM9913:collagenolytic characters, collagen-binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. Journal of Biological Chemistry, 283(52):36100-36107, doi: 10.1074/jbc.M804438200
[45] Zhou Mingyang, Chen Xiulan, Zhao Huilin, et al. 2009. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China sea. Microbial Ecology, 58(3):582-590, doi: 10.1007/s00248-009-9506-z
[46] Zhou Mingyang, Wang Guanglong, Li Dan, et al. 2013. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica. PLoS One, 8(11):e79668, doi: 10.1371/journal.pone.0079668
[47] Zimmerman A E, Martiny A C, Allison S D. 2013. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. The ISME Journal, 7(6):1187-1199, doi: 10.1038/ismej.2012.176