[1] Abe H, Ebuchi N. 2014. Evaluation of sea-surface salinity observed by Aquarius. Journal of Geophysical Research: Oceans, 119(11): 8109–8121. doi: 10.1002/2014JC010094
[2] Banks C J, Gommenginger C P, Srokosz M A, et al. 2012. Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1688–1702. doi: 10.1109/TGRS.2011.2167340
[3] Berrisford P, Dee D, Poli P, et al. 2011. The ERA-interim archive: Version 2.0. Nihon Seirigaku Zasshi Journal of the Physiological Society of Japan, 31(10): 1–40
[4] Boutin J, Martin N, Yin X B, et al. 2012. First assessment of SMOS data over open ocean: part II-sea surface salinity. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1662–1675. doi: 10.1109/TGRS.2012.2184546
[5] Boutin J, Vergely J L, Marchand S, et al. 2018. New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sensing of Environment, 214: 115–134. doi: 10.1016/j.rse.2018.05.022
[6] Drucker R, Riser S C. 2014. Validation of Aquarius sea surface salinity with Argo: Analysis of error due to depth of measurement and vertical salinity stratification. Journal of Geophysical Research: Oceans, 119(7): 4626–4637. doi: 10.1002/2014JC010045
[7] Ebuchi N, Abe H. 2014. Evaluation of sea surface salinity observed by Aquarius and SMOS. In: Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne: IEEE, 119: 8109–8121
[8] Font J, Kerr Y H, Srokosz M A, et al. 2001. SMOS: a satellite mission to measure ocean surface salinity. In: Proceedings Volume 4167, Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing. Barcelona: SPIE, 4167: 207–214
[9] Garcia-Eidell C, Comiso J C, Dinnat E, et al. 2017. Satellite observed salinity distributions at high latitudes in the northern hemisphere: a comparison of four products. Journal of Geophysical Research: Oceans, 122(9): 7717–7736. doi: 10.1002/2017JC013184
[10] Gould J, Roemmich D, Wijffels S, et al. 2004. Argo profiling floats bring new era of in situ ocean observations. Eos Transactions American Geophysical Union, 85(19): 185–191
[11] Hackert E, Busalacchi A J, Ballabrera-Poy J. 2014. Impact of Aquarius sea surface salinity observations on coupled forecasts for the tropical Indo-Pacific Ocean. Journal of Geophysical Research: Oceans, 119(7): 4045–4067. doi: 10.1002/2013JC009697
[12] Kolodziejczyk N, Reverdin G, Boutin J, et al. 2015. Observation of the surface horizontal thermohaline variability at mesoscale to submesoscale in the north-eastern subtropical Atlantic Ocean. Journal of Geophysical Research: Oceans, 120(4): 2588–2600. doi: 10.1002/2014JC010455
[13] Lagerloef G S E. 2002. Introduction to the special section: The role of surface salinity on upper ocean dynamics, air-sea interaction and climate. Journal of Geophysical Research: Oceans, 107(C12): SRF 1-1–SRF 1-2. doi: 10.1029/2002JC001669
[14] Lagerloef G, Colomb F R, Le Vine D, et al. 2008. The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography, 21(1): 68–81. doi: 10.5670/oceanog.2008.68
[15] Lee T. 2016. Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales. Geophysical Research Letters, 43(8): 3857–3864. doi: 10.1002/2016GL068822
[16] Lu Zhengting, Cheng Lijing, Zhu Jing, et al. 2016. The complementary role of SMOS sea surface salinity observations for estimating global ocean salinity state. Journal of Geophysical Research: Oceans, 121(6): 3672–3691. doi: 10.1002/2015JC011480
[17] Martin M J. 2016. Suitability of satellite sea surface salinity data for use in assessing and correcting ocean forecasts. Remote Sensing of Environment, 180: 305–319. doi: 10.1016/j.rse.2016.02.004
[18] McPhaden M J. 1995. The tropical atmosphere ocean array is completed. Bulletin of the American Meteorological Society, 76(5): 739–744. doi: 10.1175/1520-0477-76.5.739
[19] McPhaden M J, Meyers G, Ando K, et al. 2009. RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4): 459–480. doi: 10.1175/2008BAMS2608.1
[20] Meissner T, Wentz F J. 2016. Remote Sensing Systems SMAP Ocean Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 2.0 validated release. Remote Sensing Systems, Santa Rosa, CA, USA. www.remss.com/missions/smap
[21] Meissner T, Wentz F J, Le Vine D M. 2018. The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases. Remote Sensing, 10(7): 1121. doi: 10.3390/rs10071121
[22] Ratheesh S, Sharma R, Sikhakolli R, et al. 2014. Assessing sea surface salinity derived by Aquarius in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 11(4): 719–722. doi: 10.1109/LGRS.2013.2277391
[23] Reagan J, Boyer T, Antonov J, et al. 2014. Comparison analysis between Aquarius sea surface salinity and World Ocean Database in situ analyzed sea surface salinity. Journal of Geophysical Research: Oceans, 119(11): 8122–8140. doi: 10.1002/2014JC009961
[24] Reul N, Tenerelli J, Chapron B, et al. 2007. Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2073–2087. doi: 10.1109/TGRS.2006.890421
[25] Servain J, Busalacchi A J, McPhaden M J, et al. 1998. A pilot research moored array in the tropical Atlantic (PIRATA). Bulletin of the American Meteorological Society, 79(10): 2019–2032. doi: 10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2
[26] Tang Wenqing, Fore A, Yueh S, et al. 2017. Validating SMAP SSS with in situ measurements. Remote Sensing of Environment, 200: 326–340. doi: 10.1016/j.rse.2017.08.021
[27] Tang Wenqing, Yueh S H, Fore A G, et al. 2014. Validation of Aquarius sea surface salinity with in situ measurements from Argo floats and moored buoys. Journal of Geophysical Research: Oceans, 119(9): 6171–6189. doi: 10.1002/2014JC010101
[28] Terray L, Corre L, Cravatte S, et al. 2012. Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. Journal of Climate, 25(3): 958–977. doi: 10.1175/JCLI-D-10-05025.1
[29] Yueh S H, Chaubell J. 2012. Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1022–1032. doi: 10.1109/TGRS.2011.2165075
[30] Yueh S, Tang Wenqing, Fore A, et al. 2014. Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval. Journal of Geophysical Research: Oceans, 119(8): 5360–5379. doi: 10.1002/2014JC009939