[1] Bourassa M A, Meissner T, Cerovecki I, et al. 2010. Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. In: Hall J, Harrison D E, Stammer D, eds. Proceedings of the OceanObs’09: Sustained Ocean Observations and Information for Society Conference. Venice, Italy: Space Agency
[2] Carvalho D, Rocha A, Gómez-Gesteira M, et al. 2013. Comparison between CCMP, QuikSCAT and buoy winds along the Iberian Peninsula coast. Remote Sensing of Environment, 137: 173–183. doi: 10.1016/j.rse.2013.06.005
[3] Chelton D B. 2005. The impact of SST specification on ECMWF surface wind stress fields in the Eastern Tropical Pacific. Journal of Climate, 18(4): 530–550. doi: 10.1175/JCLI-3275.1
[4] Chelton D B, Freilich M H. 2005. Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Monthly Weather Review, 133(2): 409–429. doi: 10.1175/MWR-2861.1
[5] Chelton D B, Schlax M G, Freilich M H, et al. 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303: 978–983. doi: 10.1126/science.1091901
[6] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
[7] Ebuchi N, Graber H C, Caruso M J. 2002. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. Journal of Atmospheric and Oceanic Technology, 19(12): 2049–2062. doi: 10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2
[8] Gilhousen D B. 1998. Improved real-time quality control of NDBC measurements. In: 10th Symposium on Meteorological Observations and Instrumentation. Preprints. Phoenix, AZ: American Meteorological Society, 363–366
[9] Josse P, Caniaux G, Giordani H, et al. 1999. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes. Annales Geophysicae, 17(4): 566–576
[10] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP–DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society, 83(11): 1631–1644. doi: 10.1175/BAMS-83-11-1631
[11] Large W G, Holland W R, Evans J C. 1991. Quasi-geostrophic ocean response to real wind forcing: the effects of temporal smoothing. Journal of Physical Oceanography, 21(7): 998–1017. doi: 10.1175/1520-0485(1991)021<0998:QGORTR>2.0.CO;2
[12] Peng Ge. 2004. Validation of a global reanalysis model in representing synoptic-scale eddies using scatterometer data: A case study. Geophysical Research Letter, 31: L16201. doi: 10.1029/2004GL020297
[13] Peng Ge, Zhang Huaimin, Frank H P, et al. 2013. Evaluation of various surface wind products with OceanSITES buoy measurements. Weather and Forecasting, 28(6): 1281–1303. doi: 10.1175/WAF-D-12-00086.1
[14] Saha S, Moorthi S, Wu Xingren, et al. 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6): 2185–2208. doi: 10.1175/JCLI-D-12-00823.1
[15] Schmidt K M, Swart S, Reason C, et al. 2017. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the southern Ocean. Journal of Atmospheric and Oceanic Technology, 34(12): 2551–2568. doi: 10.1175/JTECH-D-17-0079.1
[16] Tang Wenqing, Liu W T, Stiles B W. 2004. Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1762–1769. doi: 10.1109/TGRS.2004.831685
[17] Yang Jungang, Zhang Jie. 2018. Evaluation of ISS-RapidScat wind vectors using buoys and ASCAT data. Remote Sensing, 10(4): 648. doi: 10.3390/rs10040648