[1] Abreu V, Sullivan M, Pirmez C, et al. 2003. Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20(6–8): 631–648
[2] Bain H A, Hubbard S M. 2016. Stratigraphic evolution of a long-lived submarine channel system in the Late Cretaceous Nanaimo Group, British Columbia, Canada. Sedimentary Geology, 337: 113–132
[3] Barnes N E, Normark W R. 1985. Diagnostic parameters for comparing modern submarine fans and ancient turbidite systems. In: Bouma A H, Normark W R, Barnes N E, eds. Submarine Fans and Related Turbidite Systems. New York: Springer-Verlag, 13–14
[4] Bassias Y. 1992. Petrological and geochemical investigation of rocks from the Davie fracture zone (Mozambique Channel) and some tectonic implications. Journal of African Earth Sciences, 15(3–4): 321–339
[5] Bird D. 2001. Shear margins: Continent-ocean transform and fracture zone boundaries. The Leading Edge, 20(2): 150–159
[6] Bouma A H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier
[7] Bouma A H, Normark W R, Barnes N E. 1985. Submarine Fans and Related Turbidite Systems. New York: Springer
[8] Bowen A J, Normark W R, Piper D J W. 1984. Modelling of turbidity currents on Navy Submarine Fan, California Continental Borderland. Sedimentology, 31(2): 169–185
[9] Breitzke M, Wiles E, Krocker R, et al. 2017. Seafloor morphology in the mozambique channel: evidence for long-term persistent bottom-current flow and deep-reaching eddy activity. Marine Geophysical Research, 38(3): 241–269
[10] Callow R H T, Kneller B, Dykstra M, et al. 2014. Physical, biological, geochemical and sedimentological controls on the ichnology of submarine canyon and slope channel systems. Marine and Petroleum Geology, 54: 144–166
[11] Civitelli G. 1988. The Meso-Cenozoic sedimentary sequence of the Cabo Delgado Province, Mozambique. Journal of African Earth Sciences, 7(4): 629–639
[12] Clark J D, Kenyon N H, Pickering K T. 1992. Quantitative analysis of the geometry of submarine channels: Implications for the classification of submarine fans. Geology, 20(7): 633–636
[13] Clark J D, Pickering K T. 1996. Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG Bulletin, 80(2): 194–220
[14] Coffin M F, Rabinowitz P D. 1987. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, 92(B9): 9385–9406
[15] Coffin M F, Rabinowitz P D. 1992. The Mesozoic East African and Madagascan conjugate continental margins: Stratigraphy and tectonics. In: Watkins J S, Feng C C, McMillen K J, eds. Geology and Geophysics of Continental Margins. AAPG Memoir, 53: 207–240
[16] Covault J A, Graham S A. 2010. Submarine fans at all sea-level stands: Tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10): 939–942
[17] Covault J A, Normark W R, Romans B W, et al. 2007. Highstand fans in the California borderland: The overlooked deep-water depositional systems. Geology, 35(9): 783–786
[18] Cronin B T, Çelik H, Hurst A, et al. 2005. Mud prone entrenched deep-water slope channel complexes from the Eocene of Eastern Turkey. In: Hodgson D M, Flint S S, eds. Submarine Slope Systems: Processes and Products. London: The Geological Society of London, 224: 155–180
[19] Daszinnies M C, Jacobs J, Wartho J A, et al. 2009. Post Pan-African thermo-tectonic evolution of the north Mozambican basement and its implication for the Gondwana rifting. Inferences from 40Ar/39Ar hornblende, biotite and titanite fission-track dating. In: Lisker F, Ventura B, Glasmacher U A, eds. Thermochronological Methods: from Palaeotemperature Constraints to Landscape Evolution Models. London: The Geological Society of London, 324: 261–286
[20] Deptuck M E, Piper D J W, Savoye B, et al. 2008. Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55(4): 869–898
[21] Deptuck M E, Sylvester Z, Pirmez C, et al. 2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6–9): 406–433
[22] Emmel B, Kumar R, Ueda K, et al. 2011. Thermochronological history of an orogen-passive margin system: An example from northern Mozambique. Tectonics, 30(2): TC2002
[23] Falivene O, Arbués P, Gardiner A, et al. 2006. Best practice stochastic facies modeling from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain). AAPG Bulletin, 90(7): 1003–1029
[24] Flores G M, Blant G T. 1973. The Cretaceous and Tertiary sedimentary basins of Mozambique and Zululand. In: Blan G T, ed. Sedimentary Basins of the African Coasts. Part II. Paris: Association of African Geology Surveys, 81–111
[25] Fonnesu F. 2013. The Mamba complex supergiant gas discovery (Mozambique): An example of turbidite fans modified by deepwater tractive bottom currents. In: The 12th PESGB/HGS Conference on African E&P. London: PESGB Conferences Ltd.
[26] Fonnesu M, Palermo D, Galbiati M, et al. 2020. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111: 179–201
[27] Förster R. 1975. The geological history of the sedimentary basin of southern Mozambique, and some aspects of the origin of the Mozambique Channel. Palaeogeography, Palaeoclimatology, Palaeoecology, 17(4): 267–287
[28] Fuhrmann A, Kane I A, Clare M A, et al. 2020. Hybrid turbidite-drift channel complexes: An integrated multiscale model. Geology, 48(6): 562–568
[29] Gutscher M A, Malod J, Rehault J P, et al. 2002. Active subduction beneath the Gibraltar arc. In: EGS XXVII General Assembly. Nice: European Geosciences Union
[30] Hancox P J, Brandt D, Edwards H. 2002. Sequence stratigraphic analysis of the Early Cretaceous Maconde Formation (Rovuma basin), northern Mozambique. Journal of African Earth Sciences, 34(3–4): 291–297
[31] Hofstra M, Hodgsona D M, Peakall J, et al. 2015. Giant scour-fills in ancient channel-lobe transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329: 98–114
[32] Jacobs J, Thomas R J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the Late Neoproterozoic-Early Paleozoic East African–Antarctic orogen. Geology, 32(8): 721–724
[33] Jegou I, Savoye B, Pirmez C, et al. 2008. Channel-mouth lobe complex of the recent Amazon Fan: The missing piece. Marine Geology, 252(1–2): 62–77
[34] Kenyon N H. 1992. Deep sea siliciclastic systems: a plan view perspective. In: Sequence Stratigraphy of European Basins. Dijon: CNRS-IFP, 458–459
[35] Kenyon N H, Klaucke I, Millington J, et al. 2002. Sandy submarine canyon-mouth lobes on the western margin of Corsica and Sardinia, Mediterranean Sea. Marine Geology, 184(1–2): 69–84
[36] Key R M, Smith R A, Smelror M, et al. 2008. Revised lithostratigraphy of the Mesozoic-Cenozoic succession of the onshore Rovuma Basin, northern coastal Mozambique. South African Journal of Geology, 111(1): 89–108
[37] Kolla V. 2007. A review of sinuous channel avulsion patterns in some major deep-sea fans and factors controlling them. Marine and Petroleum Geology, 24(6–9): 450–469
[38] Kolla V, Posamentier H W, Wood L J. 2007. Deep-water and fluvial sinuous channels—Characteristics, similarities and dissimilarities, and modes of formation. Marine and Petroleum Geology, 24(6–9): 388–405
[39] König M, Jokat W. 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research, 111: B12102
[40] Lewis K B, Pantin H M. 2002. Channel-axis, overbank and drift sediment waves in the southern Hikurangi trough, New Zealand. Marine Geology, 192(1–3): 123–151
[41] Lin Yu, Wu Shenghe, Wang Xing, et al. 2013. Research on architecture model of deepwater turbidity channel system: a case study of a deepwater research area in Niger Delta Basin, West Africa. Geological Review (in Chinese), 59(3): 510–520
[42] Lin Yu, Wu Shenghe, Wang Xing, et al. 2014. Research on reservoir architecture models of deep-water turbidite lobes. Natural Gas Geoscience (in Chinese), 25(8): 1197–1204
[43] Lowe D R. 1982. Sediment gravity flows: II, depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research, 52(1): 279–297
[44] Lu Yintao, Li Wei, Wu Shiguo, et al. 2018. Morphology, architecture, and evolutionary processes of the Zhongjian Canyon between two carbonate platforms, South China Sea. Interpretation, 6(4): SO1–SO15
[45] Mahanjane E S, Franke D. 2014. The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique. Tectonophysics, 614: 91–99
[46] Mayall M, Jones E, Casey M. 2006. Turbidite channel reservoirs—key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8): 821–841
[47] Mayall M, Lonergan L, Bowman A, et al. 2010. The response of turbidite slope channels to growth-induced seabed topography. AAPG Bulletin, 94(7): 1011–1030
[48] McHargue T, Pyrcz M J, Sullivan M D, et al. 2011. Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, 28(3): 728–743
[49] Migeon S, Savoye B, Babonneau N, et al. 2004. Processes of sediment-wave construction along the present Zaire deep-sea meandering channel: Role of meanders and flow stripping. Journal of Sedimentary Research, 74(4): 580–598
[50] Mulder T, Gonthier E, Lecroart P, et al. 2009. Sediment failures and flows in the Gulf of Cadiz (eastern Atlantic). Marine and Petroleum Geology, 26(5): 660–672
[51] Nairn A E M, Lerche I, Iliffe J E. 1991. Geology, basin analysis, and hydrocarbon potential of Mozambique and the Mozambique Channel. Earth-Science Reviews, 30(1–2): 81–123
[52] Normark W R. 1970. Growth patterns of deep-sea fans. AAPG Bulletin, 54(11): 2170–2195
[53] Normark W R. 1978. Fan valleys, channels, and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments. AAPG Bulletin, 62(6): 912–931
[54] Normark W R, Carlson P R. 2003. Giant submarine canyons: Is size any clue to their importance in the rock record?. In: Chan M A, Archer A W, eds. Extreme depositional environments: Mega End Members in Geologic Time. Special Paper of the Geological Society of America, 370: 175–190
[55] Normark W R, Piper D J W, Hess G R. 1979. Distributary channels, sand lobes, and mesotopography of Navy Submarine fan, California Borderland, with applications to ancient fan sediments. Sedimentology, 26(6): 749–774
[56] Normark W R, Piper D J W, Hiscott R N. 1998. Sea level controls on the textural characteristics and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California. Sedimentology, 45(1): 53–70
[57] Palermo D, Galbiati M, Famiglietti M, et al. 2014. Insights into a new super-giant gas field - sedimentology and reservoir modeling of the coral reservoir complex, offshore northern Mozambique. In: Offshore Technology Conference-Asia. Kuala Lumpur: OTC Asia
[58] Palermo D, Galbiati M, Mezzapesa D, et al. 2015. Sequence stratigraphy, sedimentology and reservoir modelling of the Coral reservoir, offshore northern Mozambique. In: Offshore Mediterranean Conference and Exhibition. Ravenna: OMC
[59] Paull C K, Caress D W, Ussler W, et al. 2011. High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California. Geosphere, 7(5): 1077–1101
[60] Payton C E. 1977. Seismic Stratigraphy—Applications to Hydrocarbon Exploration. Tulsa, OK, USA: The American Association of Petroleum Geologists
[61] Peakall J, Amos K J, Keevil G M, et al. 2007. Flow processes and sedimentation in submarine channel bends. Marine and Petroleum Geology, 24(6–9): 470–486
[62] Peakall J, Sumner E J. 2015. Submarine channel flow processes and deposits: A process-product perspective. Geomorphology, 244: 95–120
[63] Peakall J, Wells M G, Cossu R, et al. 2013. Global (latitudinal) variation in submarine channel sinuosity: REPLY. Geology, 41(5): e288
[64] Pickering K T, Hiscott R N, Hein F J. 1989. Deep Marine Environments: Clastic Sedimentation and Tectonics. London: Unwin Hyman
[65] Pickering K T, Hiscott R N, Kenyon N H, et al. 1995. Atlas of Deep Water Environments: Architectural Style in Turbidite Systems. Dordrecht: Springer
[66] Pinna P. 1995. On the dual nature of the Mozambique Belt, Mozambique to Kenya. Journal of African Earth Sciences, 21(3): 477–480
[67] Posamentier H W. 2003. Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico. Marine and Petroleum Geology, 20(6–8): 677–690
[68] Prather B E. 2003. Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 20(6–8): 529–545
[69] Rabinowitz P D, Coffin M F, Falvey D. 1983. The separation of Madagascar and Africa. Science, 220(4592): 67–69
[70] Raillard S. 1990. Les marges de L’Afrique de l’est et les zones de fracture associées: Chaine Davie et ride du Mozambique, Champagne MD-60/MACA MO-11 [dissertation]. Paris: Universite Pierre et Marie Curie
[71] Reading H G, Richards M. 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bulletin, 78(5): 792–822
[72] Reeves C V, de Wit M J, Sahu B K. 2004. Tight reassembly of Gondwana exposes Phanerozoic shears in Africa as global tectonic players. Gondwana Research, 7(1): 7–19
[73] Reimchen A P, Hubbard S M, Stright L, et al. 2016. Using sea-floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77: 92–115
[74] Roberts E M, Stevens N J, O’Connor P M, et al. 2012. Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5: 289–294
[75] Salazar M U, Baker D, Francis M, et al. 2013. Frontier exploration offshore the Zambezi Delta, Mozambique. First Break, 31(6): 135–144
[76] Saller A, Werner K, Sugiaman F, et al. 2008. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. AAPG Bulletin, 92(7): 919–949
[77] Saller A H, Noah J T, Ruzuar A P, et al. 2004. Linked lowstand delta to basin-floor fan deposition, offshore Indonesia: An analog for deep-water reservoir systems. AAPG Bulletin, 88(1): 21–46
[78] Salman G, Abdula I. 1995. Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique. Sedimentary Geology, 96(1–2): 7–41
[79] Sansom P. 2018. Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24: 258–276,
[80] Sapri D H, Mahmud O A, Chen H W W. 2013. Sequence stratigraphic study of Areas 3&6, Rovuma Basin, Mozambique. In: International Petroleum Technology Conference. Beijing: European Association of Geoscientists & Engineers
[81] Scrutton R A. 1978. Davie fracture zone and the movement of Madagascar. Earth and Planetary Science Letters, 39(1): 84–88
[82] Shanmugam G. 1996. High-density turbidity currents: Are they sandy debris flows?. Journal of Sedimentary Research, 66(1): 2–10
[83] Shanmugam G. 1997. The Bouma sequence and the turbidite mind set. Earth-Science Reviews, 42(4): 201–229
[84] Shanmugam G. 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20(5): 471–491
[85] Shanmugam G. 2008. The constructive functions of tropical cyclones and tsunamis on deep-water sand deposition during sea level highstand: Implications for petroleum exploration. AAPG Bulletin, 92(4): 443–471
[86] Shanmugam G. 2013. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands. AAPG Bulletin, 97(5): 799–843
[87] Shanmugam G. 2016. Submarine fans: A critical retrospective (1950–2015). Journal of Palaeogeography, 5(2): 110–184
[88] Shanmugam G, Bloch R B, Mitchell S M, et al. 1995. Basin-floor fans in the North Sea: Sequence stratigraphic models vs. sedimentary facies. AAPG Bulletin, 79(4): 477–511
[89] Shanmugam G, Moiola R J. 1982. Eustatic control of turbidites and winnowed turbidites. Geology, 10(5): 231–235
[90] Shanmugam G, Moiola R J. 1985. Submarine fan models: Problems and solutions. In: Bouma A H, Normark W R, Barnes N E, eds. Submarine Fans and Related Turbidite Systems. New York: Springer-Verlag, 29–35
[91] Shanmugam G, Moiola R J. 1995. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 79(5): 672–695
[92] Shepard F P. 1981. Submarine canyons: Multiple causes and long-time persistence. AAPG Bulletin, 65(6): 1062–1077
[93] Smelror M, Key R M, Smith R A, et al. 2008. Late Jurassic and cretaceous palynostratigraphy of the onshore Rovuma Basin, Northern Mozambique. Palynology, 32(1): 63–76
[94] Stow D A V, Mayall M. 2000. Deep-water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17(2): 125–135
[95] Sylvester Z, Pirmez C, Cantelli A. 2011. A model of submarine channel-levee evolution based on channel trajectories: Implications for stratigraphic architecture. Marine and Petroleum Geology, 28(3): 716–727
[96] Sylvester Z, Pirmez C, Cantelli A, et al. 2013. Global (latitudinal) variation in submarine channel sinuosity: COMMENT. Geology, 41(5): e287
[97] Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. 2019. Contourite depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary processes. Deep Sea Research Part I: Oceanographic Research Papers, 147: 79–99,
[98] Vail P R, Audemard F, Bowman S A, et al. 1991. The stratigraphic signatures of tectonics, eustacy and sedimentology—an overview. In: Einsele G, Ricken W, Seilacher A, eds. Cycles and Events in Stratigraphy. Berlin: Springer-Verlag, 617–659
[99] Wang Xingxing, Wang Yingmin, He Min, et al. 2017. Genesis and evolution of the mass transport deposits in the middle segment of the Pearl River canyon, South China Sea: Insights from 3D seismic data. Marine and Petroleum Geology, 88: 555–574
[100] Weimer P, Link M H. 1991. Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. New York: Springer
[101] Weimer P, Slatt R M, Bouroullec R, et al. 2006. Introduction to the petroleum geology of deepwater setting. AAPG Studies in Geology, 57: 171–175
[102] Wonham J P, Jayr S, Mougamba R, et al. 2000. 3D sedimentary evolution of a canyon fill (Lower Miocene-age) from the Mandorove Formation, offshore Gabon. Marine and Petroleum Geology, 17(2): 175–197
[103] Wynn R B, Cronin B T, Peakall J. 2007. Sinuous deep-water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6–9): 341–387
[104] Wynn R B, Kenyon N H, Masson D G, et al. 2002. Characterization and recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 86(8): 1441–1462
[105] Zaragosi S, Auffret G A, Faugères J C, et al. 2000. Physiography and recent sediment distribution of the Celtic Deep-Sea Fan, Bay of Biscay. Marine Geology, 169(1–2): 207–237
[106] Zhang Jiajia, Wu Shenghe, Fan Ting’en, et al. 2016a. Research on the architecture of submarine-fan lobes in the Niger Delta Basin, offshore West Africa. Journal of Palaeogeography, 5(3): 185–204
[107] Zhang Lei, Li Zhenhai, Zhang Xuejuan, et al. 2015. Lithofacies classification and development rule of gravity flows deposits. Journal of China University of Petroleum (in Chinese), 39(1): 17–24
[108] Zhang Wenbiao, Duan Taizhong, Liu Zhiqiang, et al. 2016b. Application of multi-point geostatistics in deep-water turbidity channel simulation: A case study of Plutonio oilfield in Angola. Petroleum Exploration and Development (in Chinese), 43(3): 403–410
[109] Zhou Zongying, Tao Ye, Li Shujun, et al. 2013. Hydrocarbon potential in the key basins in the East Coast of Africa. Petroleum Exploration and Development, 40(5): 582–591
[110] Zitellini N, Chierici F, Sartori R, et al. 1999. The tectonic source of the 1755 Lisbon earthquake and tsunami. Annals of Geophysics, 42(1): 49–55