[1] Allison I, Tivendale C M, Akerman G J, et al. 1982. Seasonal variations in the surface energy exchanges over antarctic sea ice and coastal waters. Annals of Glaciology, 3: 12–16. doi: 10.1017/S0260305500002445
[2] Bintanja R, Van Den Broeke M R. 1995. The surface energy balance of antarctic snow and blue ice. Journal of Applied Meteorology, 34(4): 902–926. doi: 10.1175/1520-0450(1995)034<0902:TSEBOA>2.0.CO;2
[3] Blanken P D, Rouse W R, Culf A D, et al. 2000. Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resources Research, 36(4): 1069–1078. doi: 10.1029/1999WR900338
[4] Comiso J C, Gersten R A, Stock L V, et al. 2017. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. Journal of Climate, 30(6): 2251–2267. doi: 10.1175/JCLI-D-16-0408.1
[5] Ding Minghu, Agrawal A, Heil P, et al. 2019. Surface energy balance on the Antarctic plateau as measured with an automatic weather station during 2014. Advances in Polar Science, 30(2): 93–105. doi: 10.13679/j.advps.2018.0050
[6] Ebita A, Kobayashi S, Ota Y, et al. 2011. The Japanese 55-year reanalysis “JRA-55”: an interim report. Scientific Online Letters on the Atmosphere: SOLA, 7(1): 149–152. doi: 10.2151/sola.2011-038
[7] Elders A, Pegion K. 2017. Diagnosing sea ice from the North American multi model ensemble and implications on mid-latitude winter climate. Climate Dynamics, 53(12): 7237–7250. doi: 10.1007/s00382-017-4049-3
[8] Hao Guanghua, Pirazzini R, Yang Q, et al. 2020. Spectral albedo of coastal landfast sea ice in Prydz Bay. Antarctica. Journal of Glaciology, 67(261): 1–11. doi: 10.1017/jog.2020.90
[9] Hunke E, Richard A, David A, et al. 2018. CICE-Consortium/CICE Version 6.0.0.alpha. Los Alamos, NM, USA: Los Alamos National Laboratory, doi: 10.5281/zenodo.1205675
[10] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP–DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society, 83(11): 1631–1644. doi: 10.1175/BAMS-83-11-1631
[11] King J C, Connolley W M, Derbyshire S H. 2001. Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Quarterly Journal of the Royal Meteorological Society, 127(573): 779–794. doi: 10.1002/qj.49712757304
[12] King J C, Gadian A, Kirchgaessner A, et al. 2015. Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. Journal of Geophysical Research: Atmospheres, 120(4): 1335–1347. doi: 10.1002/2014JD022604
[13] Lei Ruibo, Li Zhijun, Cheng Bin, et al. 2010. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica. Journal of Geophysical Research: Oceans, 115(C2): C02006. doi: 10.1029/2008JC005223
[14] Liu Changwei, Gao Zhiqiu, Yang Qinghua, et al. 2020. Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016. Annals of Glaciology, 62(82): 12–23. doi: 10.1017/aog.2019.48
[15] McPhee M G, Untersteiner N. 1982. Using sea ice to measure vertical heat flux in the ocean. Journal of Geophysical Research: Oceans, 87(C3): 2071–2074. doi: 10.1029/JC087iC03p02071
[16] Perovich D K, Elder B. 2002. Estimates of ocean heat flux at SHEBA. Geophysical Research Letters, 29(9): 58-1–58-4. doi: 10.1029/2001GL014171
[17] Perovich D K, Grenfell T C, Light B, et al. 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research: Oceans, 107(C10): SHE 20-1–SHE 20-13. doi: 10.1029/2000JC000438
[18] Perovich D K, Polashenski C. 2012. Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39(8): L08501. doi: 10.1029/2012GL051432
[19] Persson P O G, Fairall C W, Andreas E L, et al. 2002. Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. Journal of Geophysical Research: Oceans, 107(C10): SHE 21-1–SHE 21-35. doi: 10.1029/2000JC000705
[20] Shu Qi, Qiao Fangli, Song Zhenya, et al. 2012. Sea ice trends in the Antarctic and their relationship to surface air temperature during 1979–2009. Climate Dynamics, 38(11): 2355–2363. doi: 10.1007/s00382-011-1143-9
[21] Simmons A, Uppala S, Dee D, et al. 2007. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110: 25–35
[22] Välisuo I, Vihma T, King J C. 2014. Surface energy budget on Larsen and Wilkins ice shelves in the Antarctic Peninsula: results based on reanalyses in 1989–2010. The Cryosphere, 8(4): 1519–1538. doi: 10.5194/tc-8-1519-2014
[23] Valkonen T, Vihma T, Doble M. 2008. Mesoscale modeling of the atmosphere over Antarctic sea ice: a late-autumn case study. Monthly Weather Review, 136(4): 1457–1474. doi: 10.1175/2007MWR2242.1
[24] Van Den Broeke M R, Reijmer C, Van As D, et al. 2005. Seasonal cycles of Antarctic surface energy balance from automatic weather stations. Annals of Glaciology, 41(1): 131–139. doi: 10.3189/172756405781813168
[25] Vihma T, Johansson M M, Launiainen J. 2009. Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer. Journal of Geophysical Research: Oceans, 114(C4): C04019. doi: 10.1029/2008JC004995
[26] Walden V P, Hudson S R, Cohen L, et al. 2017. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign. Journal of Geophysical Research: Atmospheres, 122(16): 8427–8446. doi: 10.1002/2016JD026091
[27] Wendler G, Adolphs U, Hauser A, et al. 1997. On the surface energy budget of sea ice. Journal of Glaciology, 43(143): 122–130. doi: 10.3189/S0022143000002884
[28] Wendler G, Worby A P. 2001. The surface energy budget in the Antarctic summer sea-ice pack. Annals of Glaciology, 33: 275–279. doi: 10.3189/172756401781818220
[29] Yang Qinghua, Liu Jiping, Leppäranta M, et al. 2016. Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization. Advances in Atmospheric Sciences, 33(5): 535–543. doi: 10.1007/s00376-015-5114-7
[30] Yu Lejiang, Yang Qinghua, Zhou Mingyu, et al. 2017. The variability of surface radiation fluxes over landfast sea ice near Zhongshan station, east Antarctica during austral spring. International Journal of Digital Earth, 12(8): 860–877. doi: 10.1080/17538947.2017.1304458
[31] Zhao Jiechen, Yang Qinghua, Cheng Bin, et al. 2019. Spatial and temporal evolution of landfast ice near Zhongshan Station, East Antarctica, over an annual cycle in 2011/2012. Acta Oceanologica Sinica, 38(5): 51–61. doi: 10.1007/s13131-018-1339-5
[32] Zhou Chunlüe, Wang Kaicun. 2016. Evaluation of surface fluxes in ERA-Interim using flux tower data. Journal of Climate, 29(4): 1573–1582. doi: 10.1175/JCLI-D-15-0523.1