Citation: | ZHANG Xunan, SONG Shiji, LI Jiabiao, WU Cheng. Robust LS-SVM regression for ore grade estimation in a seafloor hydrothermal sulphide deposit[J]. Acta Oceanologica Sinica, 2013, 32(8): 16-25. doi: 10.1007/s13131-013-0337-x |
Chatterjee S, Bandopadhyay S, Rai P. 2008. Genetic algorithm-based neural network learning parameter selection for ore grade evaluation of limestone deposit. Mining Technology, 117(4): 178-190
|
Garcia-Laencina P J, Sancho-Gomez J L, Figueiras-Vidal A R. 2010.Pattern classification with missing data: a review. Neural Computing & Applications, 19(2): 263-282
|
Gencoglu M T, Uyar M. 2009. Prediction of flashover voltage of insulators using least squares support vector machines. Expert Systems with Applications, 36(7): 10789-10798
|
Herzig P M, Hannington M D. 1995. Polymetallic massive sulfides at themodern seafloor: a review. Ore Geology Reviews, 10: 95-115
|
Huang W B. 2011. Using tuned LS-SVR to derive normal height from GPS height. Proceedings of the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM2011). NJ, USA: Piscataway, 511-514
|
Jerez J M, Molina I, Garcia-Laencina P J, et al. 2010. Missing data imputation using statistical andmachine learningmethods in a real breast cancer problem. Artificial Intelligence in Medicine, 50(2): 105-115
|
Kanevski M, Pozdnoukhov A, Timonin V. 2009. Machine learning for spatial environmental data theory, application and software. Lausanne, Switzerland: EPFL Press
|
Kennedy J E, Eberhart R C. 1995. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. NJ, USA: Piscataway, 1942-1948
|
Kennedy J E, Eberhart R C. 1997. A discrete binary version of the particle swarm optimization. IEEE International Conference on Systems, Man, and Cybernetics, 5: 4104-4105
|
Little R J A, Rubin D B. 2002. Statistical Analysis with Missing Data. Hoboken, New Jersey: JohnWiley & Sons Inc
|
Lipton I. 2008. Mineral resource estimate Solwara 1 project Bismarck Sea Papua New Guinea for Nautilus Minerals Inc, Canadian NI43-101 form F1. http://www.nautilusminerals.com/i/pdf /2008-02-01?Solwara1?43-101.pdf/2008-02-01/2011-06-15
|
Mahmoudabadi H, Izadi M, Menhaj M B. 2009. A hybrid method for grade estimation using genetic algorithm and neural networks. Computational Geosciences, 13(1): 91-101
|
Samanta B. 2010. Radial basis function network for ore grade estimation. Natural Resources Research, 19(2): 91-102
|
Samanta B, Bandopadhyay S. 2009. Construction of a radial basis function network using an evolutionary algorithm for grade estimation in a placer gold deposit. Computers & Geosciences, 35(8): 1592-1602
|
Samanta B, Bandopadhyay S, Ganguli R, et al. 2002. Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics. Mining Explor Geol, 11(1-4): 69-76
|
Suykens J A K, De Brabanter J, Lukas L, et al. 2002. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing, 48(1- 4): 85-105
|
Suykens J A K, Lukas L, Van Dooren P, et al. 1999. Least squares support vector machine classifiers: a large scale algorithm. Proc European Conf on Circuit Theroy and Design (ECCTD'99). Torino, Italy: Politecnico di Torino, 839-842
|
Suykens J A K, Lukas L, Vandewalle J. 2000. Sparse approximation using least squares support vector machines. IEEE International Symposium on Circuits and Systems ISCAS'2000. Lausanne, Switzerland: Presses Polytechniques et Universitaires Romandes, 757-760
|
Suykens J A K, Vandewalle J. 1999. Least squares support vector machine classifiers. Neural Processing Letters, 9(3): 293-300
|
Van Gestel T, Suykens J A K, Baesens B, et al. 2004. Benchmarking least squares support vector machine classifiers. Machine Learning, 54(1): 5-32
|
Van Gestel T, Suykens J A K, Lanckriet G, et al. 2002. Multiclass LSSVMs: moderated outputs and coding-decoding schemes. Neural Processing Letters, 15(1): 45-58
|
Vapnik V N. 1998. Statistical Learning Theory. New York: John Wiley Xavier de Souza S, Suykens J A K. 2010. Coupled simulated annealing. IEEE transactions on Systems, Man, and Cybernetics, Part B, 40(2): 320-335
|
Yama B R, Lineberry G T. 1999. Artificial neural network application for a predictive task inmining. Mining Eng, 51(2): 59-64
|