WANG Xiaoyuan, ZHAO Huijing, ZENG Zhigang, YIN Xuebo, CHEN Shuai, MA Yao. Characteristics of silicon and oxygen isotopic compositions of basalts near East Pacific Rise 13°N[J]. Acta Oceanologica Sinica, 2013, 32(12): 104-108. doi: 10.1007/s13131-013-0396-z
Citation: WANG Xiaoyuan, ZHAO Huijing, ZENG Zhigang, YIN Xuebo, CHEN Shuai, MA Yao. Characteristics of silicon and oxygen isotopic compositions of basalts near East Pacific Rise 13°N[J]. Acta Oceanologica Sinica, 2013, 32(12): 104-108. doi: 10.1007/s13131-013-0396-z

Characteristics of silicon and oxygen isotopic compositions of basalts near East Pacific Rise 13°N

doi: 10.1007/s13131-013-0396-z
  • Received Date: 2013-05-14
  • Rev Recd Date: 2013-08-24
  • In this study, 13 groups of silicon and oxygen isotopes and major elements of the basalts near the East Pacific Rise 13°N are used to study the fractionation of silicon and oxygen isotopes. Among these data, δ30Si values of basalts vary from -0.4‰ to 0.2‰ with a mean value of δ30Si of (-0.18±0.22)‰. The δ18O values range from 4.1‰ to 6.4‰ with a mean δ18O value of (+5.35±0.73)‰. Since the δ30Si values increase in the series of basalt-basaltic andesite- andesite, and δ18O values display a positive correlation with the SiO2 content, we propose that the fractionation of silicon and oxygen isotopes is influenced by the SiO2 content in igneous rocks. Compared with the igneous rocks from Manus Basin with clinopyroxene as their dominant mineral phase, MORBs in this study containing olivine and plagioclase as primary minerals have lower δ18O and δ30Si values, indicating that the fractionation of silicon and oxygen isotopes is also affected by different Si-O bridges in silicate minerals. Furthermore, our samples from the EPR are defined as E-MORB based on K/Ti ratios. Probably, the difference in δ30Si and δ18O between our samples and a normal MORB are cause by the enriched components in E-MORBs.
  • loading
  • Andre L, Cardinal D, Alleman L, et al. 2006. Silicon isotopes in ~3.8 Ga West Greenland rocks as clues to the Eoarchaeansupracrustal Si cycle. Earth and Planetary Science Letters, 245(1-2): 162-173
    Armytage R M G, Georg R B, Savage P S, et al. 2011. Silicon isotopes in meteorites and planetary core formation.GeochimicaetCosmochimicaActa, 75(13): 3662-3676
    Batiza R, Niu Y. 1992. Petrology and Magma Chamber Processes at the East Pacific Rise ~9°30'N. Journal of Geophysical Research, 97(B5): 6779-6797
    Batiza R, Niu Y, Karsten J L, et al. 1996. Steady and non-steady state magma chambers below the East Pacific Rise. Geophysical Research Letters, 23(3): 221-224
    Batiza R, Oestrike R, Futa K. 1982. Chemical and isotopic diversity in basalts dredged from the East Pacific Rise at 10°S, the fossil Galapagos Rise and the Nazca plate. Marine Geology, 49(1-2): 115-132
    Beucher C P, Brzezinski M A, Jones J L. 2011. Mechanisms controlling silicon isotope distribution in the Eastern Equatorial Pacific.GeochimicaetCosmochimicaActa, 75(15): 4286-4294
    Campsie J, Johnson L G., Rasmussen M H, et al. 1984. Dredged basalts from the western Nazca plate and the evolution of the East Pacific Rise. Earth and Planetary Science Letters, 68(2): 271-285
    Chakrabarti R, Jacobsen S B. 2010. Silicon isotopes in the inner Solar System: Implications for core formation, solar nebular processes and partial melting. GeochimicaetCosmochimicaActa, 74(23): 6921-6933
    Choukroune P, Francheteau J, Hekinian R. 1984. Tectonics of the East Pacific Rise near 12°50'N: a submersible study. Earth and Planetary Science Letters, 68(1): 115-127
    Ding Tiping, GaoJianfei, TianShihong, et al. 2011. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle.GeochimicaetCosmochimicaActa, 75(21): 6672-6689
    Ding Tiping, Ma Guorui, ShuiMaoxing, et al. 2005. Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 218(1-2): 41-50
    Ding Tiping, Wan Defang, Li Jincheng, et al. 1988. The analytical method of silicon isotopes and its geological application. Mineral Deposits, 7: 90-96
    Douthitt C B. 1982. The geochemistry of the stable isotopes of silicon.GeochimicaetCosmochimicaActa, 46(8): 1449-1458
    Eiler J M, Farley K A, Valley J W, et al. 1997. Oxygen isotope variations in ocean island basalt phenocrysts. GeochimicaetCosmochimicaActa, 61(11): 2281-2293
    Georg R B, Halliday A N, Schauble E A, et al. 2007. Silicon in the Earth's core. Nature, 447(7148): 1102-1106
    Harmon R S, Hoefs J. 1995. Oxygen isotope heterogeneity of the mantle deduced from global δ18O systematics of basalts from different geotectonic settings. Contributions to Mineralogy and Petrology, 120: 95-114
    Ito E, White W M, Göpel C. 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 62(3-4): 157-176
    Klitgord K D, Mammerickx J. 1982. Northern East Pacific Rise: magnetic anomaly and bathymetric framework. J Geophys Res, 87(B8): 6725-6750
    leRoex A P, Frey F A, Richardson S H. 1996. Petrogenesis of lavas from the AMAR Valley and Narrowgate region of the FAMOUS Valley, 36°-37°N on the Mid-Atlantic Ridge. Contributions to Mineralogy and Petrology, 124(2): 167-184
    le Roux P, le Roex A, Schilling J G. 2002. Crystallization processes beneath the southern Mid-Atlantic Ridge (40-55°S), evidence for high-pressure initiation of crystallization. Contributions to Mineralogy and Petrology, 142(5): 582-602
    Morgan J P, Morgan W J. 1999. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth and Planetary Science Letters, 170(3): 215-239
    Muehlenbachs K, Clayton R N. 1976. Oxygen Isotope Composition of the Oceanic Crust and Its Bearing on Seawater. Journal of Geophysical Research, 81(23): 4365-4369
    Niu Y, Batiza R. 1997. Extreme Mantle Source Heterogeneities Beneath the Northern East Pacific Rise Ñ Trace Element Evidence From Near-Ridge Seamounts. Proceedings of the 30th International Geological Congress, 15: 109-120
    Niu Y, Collerson K D, Batiza R. 1999. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20'N. Journal of Geophysical Research, 104(B4): 7067-7087
    Niu Y, Waggoner D G, Sinton J M, et al. 1996. Mantle source heterogeneity and melting processes beneath seafloor spreading centres: the East Pacific Rise, 18°-19°S. Journal of Geophysical Research, 101(B12): 27711-27733
    Pineau F, Javoy M, Hawkins J W, et al. 1976.Oxygen isotope variations in marginal basin and ocean-ridge basalts. Earth and Planetary Science Letters, 28(3): 299-307
    Savage P S, Georg R B, Armytage R M G., et al. 2010. Silicon isotope homogeneity in the mantle. Earth and Planetary Science Letters, 295(1-2): 139-146
    Savage P S, Georg R B, Williams H M, et al. 2011. Silicon isotope fractionation during magmatic differentiation.GeochimicaetCosmochimicaActa, 75(20): 6124-6139
    Widom E, Farquhar J. 2003. Oxygen isotope signatures in olivines from Sâo Miguel (Azores) basalts: implications for crustal and mantle processes. Chemical Geology, 193: 237-255
    Williams H M, Nielsen S G, Renac C, et al. 2009. Fractionation of oxygen and iron isotopes by partial melting processes: Implications for the interpretation of stable isotope signatures in mafic rocks. Earth and Planetary Science Letters, 283(1-4): 156-166
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1168) PDF downloads(1333) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return