Citation: | WANG Ren, WANG Xumin, ZHANG Yalan, YU Jun, LIU Tao, CHEN Shengping, CHI Shan. Origin and evolution of alginate-c5-mannuronan-epimerase gene based on transcriptomic analysis of brown algae[J]. Acta Oceanologica Sinica, 2014, 33(2): 73-85. doi: 10.1007/s13131-014-0443-4 |
Arnold K L, Bordoli J, Kopp, et al. 2006. The SWISS-MODEL Workspace: a web-base environment for protein structure homology modeling. Bioinformatics, 22: 195-201
|
Chitnis C E, Ohman D E. 1990. Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. Bacteriol, 172(6): 2894-2900
|
Chitnis C E, Ohman D E. 1993. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol, 8: 583-590
|
Cook J M, Sterck L, Rouzé P, et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465: 617-621
|
Douglas S E. 1998. Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev, 8: 655-661
|
Ertesv?g H, Doseth B, Larsen B, et al. 1994. Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J Bacteriol, 176: 2846-2853
|
Ertesv?g H, H?idal H K, Hals I K, et al. 1995. A family of modular type mannuronan C-5-epimerase genes controls alginate structure in Azotobacter vinelandii. Mol Microbiol, 9: 719-731
|
Ertesv?g H, H?idal H K, Skj?k-Br?k G, et al. 1998. The Azotobacter vinelandii mannuronan C-5-epimerase AlgE1 consists of two separate catalytic domains. J Biol Chem, 273: 30927-30932
|
Ertesv?g H, Valla S. 1999. The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. J Bacteriol, 181: 3033-3038
|
Flagel L, Wendel J. 2009. Gene duplication and evolutionary novelty in plants. New Phytologist, 183: 557-564
|
Franklin M J, Chitnis C E, Gacesa P, et al. 1994. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol, 176: 1821-1830
|
Gimmestad M, Sletta H, Ertesvag H, et al. 2003. The Pseudomonas fluorescens AlgG protein, but not itsmannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol, 185: 3515-3523
|
Gorin P A, Spencer J F. 1966. Exocellular alginic acid from Azotobacter vinelandii. Can J Chem, 44: 993-998
|
Govan J R W, Fyfe J A M, Jarman T R. 1981. Isolation of alginate producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J Gen Microbiol, 125: 217-220
|
Guex N, Peitsch M C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis, 18: 2714-2723
|
Gurvan M, Thierry T, Delphine S, et al. 2010. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 188: 82-97
|
Rozeboom H J, Bjerkan T M, Kalk K H, et al. 2008. Structural and Mutational Characterization of the Catalytic A-module of the Mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J Biol Chem, 283: 23819-23828
|
Hughes T, Liberles D A. 2007. The pattern of evolution of smaller-scale gene duplicates in mammalian genomes is more consistent with neo-than subfunctionalisation. J Mol Evol, 65(5): 574-588
|
Jain S, Franklin M J, Ertesvag H, et al. 2003. The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol, 47: 1123-1133
|
Jain S, Ohman D E. 1998. Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol, 180: 634-641
|
Jenkins J, Shevchik V E, Hugouvieux-Cotte-Pattat N, et al. 2004. The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi. J Biol Chem, 279: 9139-9145
|
Kloareg B, Quatrano R S. 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev, 1988: 259-315
|
Lang B F, Seif E, Gray M W, et al. 1999. A comparative genomics approach to the evolution of eukaryotes and their mitochondria. J Eukaryot Microbiol, 46: 320-326
|
Linker A, Jones R S. 1966. A new polysaccharide resembling alginic acid isolated from pseudomonas. J Biol Chem, 241: 3845-385
|
Lynch M, Force A. 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics, 154(1): 459-473
|
Morch Y A, Holtan S, Donati I, et al. 2008. Mechanical properties of C-5 epimerized alginates. Biomacromolecules, 9: 2360-2368
|
Moreira D, Le Guyader H, Philippe H. 2000. The origin of red algae and the evolution of chloroplasts. Nature, 405: 69-72
|
Nyvall P, Erwan C, Claire B, et al. 2003. Characterization of Mannuronan C-5-Epimerase Genes from the Brown Alga Laminaria digitata. Plant Physiology, 133(2): 726-735
|
Okasaki M, Furuya K, Tsukayama K, et al. 1982. Isolation and identification of alginic acid from a calcareous red alga Serraticardia maxima. Botanica Marina, 25: 123-131
|
Okasaki M, Shiroto C, Furuya K. 1984. Relationship between the location of polyuronides and calcification sites in the calcareous red algae Serraticardia maxima and Lithothamnion japonica (Rhodophyta, Corallinaceae). Jap J Phycol, 32: 364-372
|
Page R D. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12: 357-358
|
Panikkar R, Brasch D J. 1996. Composition and block structure of alginates from New Zealand brown seaweeds. Carbohydr Res, 293: 119-132
|
Pedersen S S, Hoiby N, Espersen F, et al. 1992. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax, 47: 6-13
|
Penaloza-Vazquez A, Kidambi S P, Chakrabarty A M, et al. 1997. Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J Bacteriol, 179: 4464-4472
|
Posada D, Crandall K A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14: 817-818
|
Rehm B H A, Ertesv?g H, Valla S. 1996. A new Azotobacter vinelandii mannuronan C-5-epimerase gene (algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa. Bacteriol, 178: 5884-5889
|
Rehm B H A, Valla S. 1997. Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol, 48: 281-288
|
Reyes-Prieto A, Weber A P, Bhattacharya D. 2007. The origin and establishment of the plastid in algae and plants. Annual Review of Genetics, 41: 147-168
|
Robles-Price A, Wong T Y, Sletta H, et al. 2004. AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol, 186: 7369-7377
|
Ronquist F, Huelsenbeck J P. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574
|
Sadoff H L. 1975. Encystment and germination of Azotobacter vinelandii. Bacteriol Rev, 39: 516-539
|
Schwede T, Kopp J, Guex N, et al. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31: 3381-3385
|
Skj?k-Br?k G, Espevik T. 1996. Application of alginate gels in biotechnology and biomedicine. Carbohydr Eur, 14: 19-25
|
Smidsr?d O, Draget K I. 1996. Chemistry and physical properties of alginates. Carbohydr Eur, 14: 6-13
|
Stephanie A, Douthit D, Mensur E O, et al. 2005. Epimerase Active Domain of Pseudomonas aeruginosa AlgG, a Protein That Contains a Right-Handed β-Helix. Journal of Bacteriology, 187(13): 4573-4583
|
Svanem B I, Skj?k-Br?k G, Ertesv?g H, et al. 1999. Cloning and expression of three new Azotobacter vinelandii genes closely related to a previously described gene family encoding mannuronan C-5-epimerases. Bacteriol, 181: 68-77
|
Thompson J D, Gibson T J, Plewniak F, et al. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25: 4876-4882
|
Usov A I, Bilan M I, Klochkova N G. 1995. Polysaccharides of algae. 48. Polysaccharide composition of several calcareous red algae: isolation of alginate from Corallina pilulifera P. et R. (Rhodophyta, Corallinaceae). Botanica Marina, 38: 43-52
|