WANG Zhifeng, WU Kejian, XIA Changshui, ZHANG Xiaoshuang. The impact of surface waves on the mixing of the upper ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 32-39. doi: 10.1007/s13131-014-0514-6
Citation: WANG Zhifeng, WU Kejian, XIA Changshui, ZHANG Xiaoshuang. The impact of surface waves on the mixing of the upper ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 32-39. doi: 10.1007/s13131-014-0514-6

The impact of surface waves on the mixing of the upper ocean

doi: 10.1007/s13131-014-0514-6
  • Received Date: 2013-03-28
  • Rev Recd Date: 2013-06-09
  • A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the "Coriolis-Stokes forcing" and the "Stokes-Vortex force" are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.
  • loading
  • Ardhuin F, Rascle N, Belibassakis K A. 2008. Explicit wave averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling, 20: 35-60, doi:10.1016/j. ocemod. 2007. 07.001
    Bi Fan,Wu Kejian, Zhang Yuming. 2012. The effect of Stokes drift on Ekman transport in the open sea. Acta Oceanologica Sinica, 31(6): 12-18, doi: 10.1007/s13131-012-0249-1
    Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal oceancirculation model, in three-dimensional coastal ocean models. Coastal and Estuarine Study, 4: 1-16
    Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography, 24(12): 2546-2559
    Craik A D. 1977. The generation of Langmuir circulation by an instability mechanism. Journal of Fluid Mechanics, 125: 37-52
    Craik A D, Leibovich S. 1976. A rational model for Langmuir circulations. Journal of Fluid Mechanics, 73(3): 401-426
    Hasselmann K. 1970. Wave-driven inertial oscillations. Geophysical Fluid Dynamics, 1(3/4): 463-502
    Holm D D. 1996. The ideal Craik-Leibovich equations. Physica D, 98(2-4): 415-441
    Jenkins A D. 1986. A theory for steady and variable wind-and waveinduced currents. Journal of Physical Oceanography, 16(8): 1370-1377
    Kantha L H, Clayson C A. 1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99(C12): 25235-25266 Kantha L H, C A Clayson. 2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling, 6(2): 101-124 Lane E M, Restrepo J M, McWilliams J C. 2007. Wave-current interaction: a comparison of radiation-stress and vortex-force representations. Journal of Physical Oceanography, 37(5): 1122-1141
    Langmuir I. 1983. Surface motion of water induced by wind. Science, 87: 119-123
    Lewis D M, Belcher S E. 2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dynamics of Atmospheres and Oceans, 37(4): 313-351
    Li M, Garrett C, 1997. Mixed-layer deepening due to Langmuir circulation. Journal of Physical Oceanography, 27(1): 121-132
    Li M, Garrett C, Skyllingstad E. 2005. A regime diagram for classifying turbulent large eddies in the upper ocean. Deep Sea Research Part I, 52(2): 259-278
    Li Shuang, Song Jinbao, Fan Wei. 2013. Effect of Langmuir circulation on upper ocean mixing in the South China Sea. Acta Oceanologica Sinica, 32(3): 28-33, doi: 10.1007/s13131-013-0285-5
    Longuet-Higgins, Stewart R W,. 1960. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8: 565-583
    Longuet-Higgins, Stewart R W. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10: 529-549
    Mellor George, Blumberg Alan. 2004. Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34(3): 693-698
    Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7): 1791-1806
    Mellor G L, Ymadaa T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20(4): 851-875
    McWillianms J C. 1996. Modeling the oceanic general circulation. Annual Review of Fluid Mechanics, 28: 215-248
    McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography, 29(10): 2523-2540
    McWilliams J C, Sullivan P P. 2001. Vertical mixing by Langmuir circulations. Spill and Science Technology, 6(3-4): 225-238
    McWillianms J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334: 1-30
    McWilliams J C, Testrepo J M, Lane E M. 2004. An asymptotic theory for the ocean. Journal of Fluid Mechanics, 511: 135-178
    Newberger P A, Allen J S. 2007a. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation. Journal of Geophysical Research, 112: C08018, doi: 10. 1029/2006JC003472
    Newberger P A, Allen J S. 2007b. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94. Journal of Geophysical Research, 112: C08019. doi: 10.1029/2006JC003474
    Philips O M. 1977. The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press, 336
    Polton J A, Belcher S E. 2007. Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. Journal of Geophysical Research, 112: C09020, doi: 10. 1029/2007JC004205
    Polton J A, Lewis D M, Belcher S E. 2005. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. Journal of Physical Oceanography, 35(4): 444-457
    Skyllingstad E D, Denbo D W. 1995. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. Journal of Geophysical Research, 100(C5): 8501-8522
    Smith J. 1998. Evolution of Langmuir circulation during a storm. Journal of Geophysical Research, 103(C6): 12649-12668
    Smith J A. 2006. Wave-current interactions in finite-depth. Journal of Physical Oceanography, 36(7): 1403-1419
    Smyth W D, Skyllingstad E D, Crawford G B, et al. 2002. Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dynamics, 52(3), 105-115
    Sullivan P P, McWilliams J C. 2010. Dynamics of winds and currents coupled to surface waves. Annual Review of Fluid Mechanics, 42: 19-42
    Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. Journal of Fluid Mechanics, 593: 405-452
    Stokes G G. 1984. On the theory of oscillatory waves. Trans Cambridge Philosophical Society, 8: 441-455
    Uchiyama Y, McWilliams J C. 2008. Infragravity waves in the deep ocean: generation, propagation, and seismic hum excitation. Journal of Geophysical Research, 113: C07029. doi:10.1029 /2007 JC 00 4562
    Uchiyama Y, McWilliams J C, Restrepo J M. 2009. Wave-current interaction in nearshore shear instability analyzed with a vortex-force formalism. Journal of Geophysical Research, 114: C06021, doi: 10.1029/2008JC005135
    Weber J E. 1983. Steady wind-and wave-induced currents in the open ocean. Journal of Physical Oceanography, 13(3): 524-530
    Weber J E. 2003. Wave-induced mass transport in the oceanic surface layer. Journal of Physical Oceanography, 33(12): 2527-2533
    Wessel P, Smith W H F. 1996. A global self-consistent hierarchical, high resolution shoreline database. Journal of Geophysical Research, 101(B4): 8741-8743
    Wu K J, Liu B. 2008. Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current. Journal of Geophysical Research, 113: C10002, doi: 10. 1029/2007 JC00 4579
    Wu K J, Yang Z L, Liu B, et al. 2008. Wave energy input into the Ekman layer. Science in China Series D: Earth Sciences, 51(1): 134-141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1461) PDF downloads(1071) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return