Wu Yuehong, Cao Yi, Wang Chunsheng, Wu Min, Aharon Oren, Xu Xuewei. Microbial community structure and nitrogenase gene diversity of sediment from a deep-sea hydrothermal vent field on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2014, 33(10): 94-104. doi: 10.1007/s13131-014-0544-0
Citation: Wu Yuehong, Cao Yi, Wang Chunsheng, Wu Min, Aharon Oren, Xu Xuewei. Microbial community structure and nitrogenase gene diversity of sediment from a deep-sea hydrothermal vent field on the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2014, 33(10): 94-104. doi: 10.1007/s13131-014-0544-0

Microbial community structure and nitrogenase gene diversity of sediment from a deep-sea hydrothermal vent field on the Southwest Indian Ridge

doi: 10.1007/s13131-014-0544-0
  • Received Date: 2013-03-25
  • Rev Recd Date: 2013-11-02
  • A sediment sample was collected from a deep-sea hydrothermal vent field located at a depth of 2 951 m on the Southwest Indian Ridge. Phylogenetic analyses were performed on the prokaryotic community using polymerase chain reaction (PCR) amplification of the 16S rRNA and nifH genes. Within the Archaea, the dominant clones were from marine benthic group E (MBGE) and marine group I (MGI) belonging to the phyla Euryarchaeota and Thaumarchaeota, respectively. More than half of the bacterial clones belonged to the Proteobacteria, and most fell within the Gammaproteobacteria. No epsilon Proteobacterial sequence was observed. Additional phyla were detected including the Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Nitrospirae, Chloroflexi, Chlorobi, Chlamydiae, Verrucomicrobia, and candidate divisions OD1, OP11, WS3 and TM6, confirming their existence in hydrothermal vent environments. The detection of nifH gene suggests that biological nitrogen fixation may occur in the hydrothermal vent field of the Southwest Indian Ridge. Phylogenetic analysis indicated that only Clusters I and III nifH were present. This is consistent with the phylogenetic analysis of the microbial 16S rRNA genes, indicating that Bacteria play the main role in nitrogen fixation in this hydrothermal vent environment.
  • loading
  • Agogue H, Brink M, Dinasquet J, et al. 2008. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature, 456(7223): 788-791
    Arakawa S, Sato T, Yoshida Y, et al. 2006. Comparison of the microbial diversity in cold-seep sediments from different depths in the Nankai Trough. J Gen Appl Microbiol, 52(1): 47-54
    Baker G C, Smith J J, Cowan D A. 2003. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods, 55(3): 541-555
    Beal E J, House C H, Orphan V J. 2009. Manganese-and iron-dependent marine methane oxidation. Science, 325(5937): 184-187
    Blazejak A, Erseus C, Amann R, et al. 2005. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Microbiol, 71(3): 1553-1561
    Brandt A, Gooday A J, Brandao S N, et al. 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 447(7142): 307-311
    Brochier-Armanet C, Boussau B, Gribaldo S, et al. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol, 6(3): 245-252
    Burns J A, Zehr J P, Capone D G. 2002. Nitrogen-fixing phylotypes of Chesapeake Bay and Neuse River estuary sediments. Microb Ecol, 44(4): 336-343
    Chien Y T, Zinder S H. 1994. Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD 1 from the eubacterium Clostridium pasteurianum. J Bacteriol, 176: 6590-6598
    Crump B C, Peranteau C, Beckingham B, et al. 2007. Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters. Appl Environ Microbiol, 73(21): 6802-6810
    DeLong E F, Preston C M, Mincer T, et al. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science, 311(5760): 496-503
    Egli K, Fanger U, Alvarez P J, et al. 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol, 175(3): 198-207
    Erkel C, Kube M, Reinhardt R, et al. 2006. Genome of Rice Cluster I archaea -the key methane producers in the rice rhizosphere. Science, 313(5785): 370-372
    Francis C A, Roberts K J, Beman J M, et al. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102(41): 14683-14688
    Gillan D C, Pernet P. 2007. Adherent bacteria in heavy metal contaminated marine sediments. Biofouling, 23(1): 1-13
    Hashimoto J, Ohta S, Gamo T, et al. 2001. First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci, 18(5): 717-721
    Heijs S K, Laverman A M, Forney L J, et al. 2008. Comparison of deepsea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiol Ecol, 64(3): 362-377
    Hunter E M, Mills H J, Kostka J E. 2006. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol, 72(9): 5689-5701
    Inagaki F, Nunoura T, Nakagawa S, et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 103(8): 2815-2820
    Jørgensen B B, Boetius A. 2007. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol, 5(10): 770-781
    Jukes T H, Cantor C R. 1969. Evolution of protein molecules. In: Munro H N, ed. Mammalian Protein Metabolism. New York: Academic Press, 21-132
    Kato S, Kobayashi C, Kakegawa T, et al. 2009. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. Environ Microbiol, 11(8): 2094-2111
    Kimura M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol, 16(2): 111-120
    Kirchman D L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol, 39(2): 91-100
    Kotelnikova S V, Obraztsova A Y, Blotevogel K H, et al. 1993. Taxonomic analysis of thermophilic strains of the genus Methanobacterium: Reclassification of Methanobacterium thermoalcaliphilum as a synonym of Methanobacterium thermoautotrophicum. Int J Syst Bacteriol, 43(3): 591-596
    Könneke M, Bernhard A E, de la Torre J R, et al. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature,437(7058): 543-546
    Li Huirong, Yu Yong, Luo Wei, et al. 2009. Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles, 13(2): 233-246
    López-Garcia P, Duperron S, Philippot P, et al. 2003. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol, 5(10): 961-976
    Mason O U, Stingl U, Wilhelm L J, et al. 2007. The phylogeny of endolithic microbes associated with marine basalts. Environ Microbiol, 9(10): 2539-2550
    Mehta M P, Butterfield D A, Baross J A. 2003. Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol, 69(2): 960-970
    Mehta M P, Huber J A, Baross J A. 2005. Incidence of novel and potentially archaeal nitrogenase genes in the deep Northeast Pacific Ocean. Environ Microbiol, 7(10): 1525-1534
    Musat N, Werner U, Knittel K, et al. 2006. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol, 29(4): 333-348
    Nakagawa S, Inagaki F, Suzuki Y, et al. 2006. Microbial community in black rust exposed to hot ridge flank crustal fluids. Appl Environ Microbiol, 72(10): 6789-6799
    Nakagawa S, Takai K, Horikoshi K, et al. 2004. Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol, 54(Pt2): 329-335
    Nercessian O, Fouquet Y, Pierre C, et al. 2005. Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol, 7(5): 698-714
    Nunoura T, Oida H, Miyazaki M, et al. 2007. Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfatereducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol, 57(10): 2360-2364
    Oude Elferink S J, Akkermans-van Vliet W M, Bogte J J, et al. 1999. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetatedegrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Bacteriol, 49(2): 345-350
    Pham V D, Konstantinidis K T, Palden T, et al. 2008. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol, 10(9): 2313-2330
    Polymenakou P N, Bertilsson S, Tselepides A, et al. 2005. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol, 50(3): 447-462
    Rees G N, Patel B K. 2001. Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int J Syst Evol Microbiol, 51(5): 1911-1916
    Polymenakou P N, Lampadariou N, Mandalakis M. 2009. Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea. Syst Appl Microbiol, 32(1): 17-26
    Rouvière P, Mandelco L, Winker S, et al. 1992. A detailed phylogeny for the Methanomicrobiales. Syst Appl Microbiol, 15(3): 363-371
    Saitou N, Nei M. 1987. The neighbour joining method: a new tool for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406-425
    Santelli C M, Orcutt B N, Banning E, et al. 2008. Abundance and diversity of microbial life in ocean crust. Nature, 453(7195): 653-656
    Schloss P D, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol, 71(3): 1501-1506
    Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 75(23): 7537-7541
    Schmid M C, Risgaard-Petersen N, van de Vossenberg J, et al. 2007. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol, 9(6): 1476-1484
    Schrenk M O, Kelley D S, Bolton S A, et al. 2004. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ Microbiol, 6(10): 1086-1095
    Schrenk M O, Kelley D S, Delaney J R, et al. 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol, 69(6): 3580-3592
    Smith J L, Campbell B J, Hanson T E, et al. 2008. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol, 58(7): 1598-1602
    Sørensen K B, Glazer B, Hannides A, et al. 2007. Spatial structure of the microbial community in sandy carbonate sediment. Mar Ecol Prog Ser, 346: 61-74
    Suzuki Y, Inagaki F, Takai K, et al. 2004. Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems. Microb Ecol, 47(2): 186-196
    Takai K, Gamo T, Tsunogai U, et al. 2004. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles, 8(4): 269-282
    Takai K, Horikoshi K. 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152(4): 1285-1297
    Takai K, Inoue A, Horikoshi K. 2002. Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol, 52(Pt4): 1089-1095
    Takai K, Miyazaki M, Hirayama H, et al. 2009. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol, 11(8): 1983-1997
    Tamura K, Dudley J, Nei M, et al. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8): 1596-1599
    Teske A, Alm E, Regan J M, et al. 1994. Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. J Bacteriol, 176(21): 6623-6630
    Van Dover C L, Humphris S E, Fornari D, et al. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294(5543): 818-823
    Vetriani C, Jannasch H W, MacGregor B J, et al. 1999. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol, 65(10): 4375-4384
    von Wintzingerode F, Göbel U B, Stackebrandt E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCRbased rRNA analysis. FEMS Microbiol Rev, 21(3): 213-229
    Voordeckers J W, Starovoytov V, Vetriani C. 2005. Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol, 55(2): 773-779
    Wang Shufang, Xiao Xiang, Jiang Lijing, et al. 2009. Diversity and abundance of ammonia-oxidizing archaea in hydrothermal vent chimneys of the Juan de Fuca Ridge. Appl Environ Microbiol, 75(12): 4216-4220
    Wasmund K, Kurtböke D I, Burns K A, et al. 2009. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity. FEMS Microbiol Ecol, 68(2): 142-151
    Xu Meixiang, Wang Peng, Wang Fengping, et al. 2005. Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers Conserv, 14(14): 3363-3380
    Zehr J P, Jenkins B D, Short S M, et al. 2003. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol, 5(7): 539-554
    Zehr J P, McReynolds L A. 1989. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol, 55(10): 2522-2526
    Zhou J, Bruns M A, Tiedje J M. 1996. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 62(2): 316-322
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1647) PDF downloads(1686) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return