HAN Lei. A two-time-level split-explicit ocean circulation model (MASNUM) and its validation[J]. Acta Oceanologica Sinica, 2014, 33(11): 11-35. doi: 10.1007/s13131-014-0553-z
Citation: HAN Lei. A two-time-level split-explicit ocean circulation model (MASNUM) and its validation[J]. Acta Oceanologica Sinica, 2014, 33(11): 11-35. doi: 10.1007/s13131-014-0553-z

A two-time-level split-explicit ocean circulation model (MASNUM) and its validation

doi: 10.1007/s13131-014-0553-z
  • Received Date: 2013-08-13
  • Rev Recd Date: 2013-11-26
  • A two-time-level, three-dimensional numerical ocean circulation model (named MASNUM) was established with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reynolds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-backward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the computational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propagation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional (northwest Pacific) and a quasi-global (global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.
  • loading
  • Arakawa A 1966. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow: Part I. J Comput Phys, 1: 119-143
    Asselin R. 1972. Frequency filters for time integrations. Monthly The authorather Review, 100: 487-490
    Biastoch Arne, Böning Claus W, Getzlaff Julia, et al. 2008. Causes of interannual-decadal variability in the meridional overturning circulation of the midlatitude north Atlantic Ocean. J Climate, 21: 6599-6615
    Bleck R, Smith L T. 1990. A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. J Geophys Res, 95: 3273-3285
    Brown J A, Campana K A. 1978. An economical time-differencing system for numerical weather prediction. Mon The authorather Rev, 106(8): 1125-1136
    Chen Changsheng, Liu Hedong, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Ocean Tech, 20: 159-186
    da Silva A, Young C, Levitus S. 1994. Atlas of Surface Marine Data 1994, Vol. 1, Algorithms and Procedures. Washington, D C: U S Dep of Commer, 74
    Durran Dale R. 1999. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New York: Springer, 470
    Flather R A, Heaps N S. 1975. Tidal computations for Morecambe Bay. Geophys J of the Roy Astron Soc, 42: 489-517
    Fujio S, Kadowaki T, Imasato N. 1992. World ocean circulation diagnostically derived from hydrographic and wind stress fields: 1. The velocity field. J Geophys Res, 97 (C7): 11163-11176
    Gary E, Bennett A, Foreman M. 1994. TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res, 99: 24821-24852
    Griffies S M, Harrison M J, Pacanowski R C, et al. 2003. A Technical Guide to MOM4. Princeton, New Jersey: NOAA/Geophysical Fluid Dynamics Laboratory, 295
    Haidvogel D B, Beckmann A. 1997. Numerical modeling of the coastal ocean. Brink K H, Robinson A R, eds, The Sea, Vol.10, New York: Wiley, 457-482
    Hallberg R W. 1997. Stable split time stepping schemes for large scale ocean modeling. J Comput Phys, 135: 54-65
    Han Lei. 2014. Error evaluation on the vertical velocity algorithm in a mode-splitting ocean circulation model POM. Acta Oceanologica Sinica, 33(7): 12-20
    Hansen W. 1962. Hydrodynamical methods applied to oceanographic problems. Proceedings of the Symposium on Mathematical-Hydrodynamical Methods of Physical Oceanography, Institute Fur Meereskunde der Universitat, Hamberg, The authorst Germany: 25-34
    Huang Chuanjiang, Qiao Fangli. 2010. Wave-turbulence interaction and its induced mixing in the upper ocean. J Geophys Res, 115: C4026
    Huang, Haosheng, Chen Changsheng, Geoffrey W Cowles, et al. 2008. FVCOM validation experiments: Comparisons with ROMS for three idealized barotropic test problems. J Geophys Res, 113: C07042
    Jackett D R, McDougall T J, Feistel R, et al. 2006. Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J Atmos Ocean Tech, 23: 1709-1728
    Kantha L H, Clayson C A. 2000. Numerical Models of Oceans and Oceanic Processes. San Diego: Academic Press, 750
    Kar Sajal K, Janjic Zavisa. 2012. A three-time-level explicit economical (3TL-EEC) time-difference scheme: T N Krishnamurti Symposium. AMS 92nd Annual Meeting. New Orleans, LA: 22-26
    Killworth P D, Stainforth D, Webb D J, et al. 1991. The development of a free-surface Bryan-Cox-Semtner ocean model. J Phys Oceanogr, 21: 1333-1348
    Kurihara Y. 1965. On the use of implicit and iterative methods for the time integration of the wave equation. Mon The authorather Rev, 93: 33-46
    Levitus S. 1982. Climatological Atlas of the World Ocean. Washington, D C: US Govt Print Off, 173
    Lin Xiaopei, Xie Shangping, Chen Xianyao, et al. 2006. A well-mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing. J Geophys Res, 111: C11017
    Liu Hailong, Zhang Xuehong, Li Wei, et al. 2004. A eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv in Atmos Sci, 21: 675-690
    Magazenkov L. 1980. Trudy Glavnoi geofizicheskoi observatorii, Transactions of the Main Geophysical Observatory, 410: 120-129
    Maltrud M E, McClean J L. 2005. An eddy resolving global 1/10o ocean simulation. Ocean Modell, 8: 31-54
    Marsaleix P, Auclair F, Duhaut T, et al. 2012. Alternatives to the Robert-Asselin filter. Ocean Modell, 41: 53-66
    McDougall T J, Jackett D R, Wright D G, et al. 2003. Accurate and computationally efficient algorithms for potential temperature and density of seawater. J Atmos Ocean Tech, 20: 730-741
    Mellor G L. 2003. Users guide for a three-dimensional, primitive equation, numerical ocean model. Prog in Atmos and Ocean Sci, New Jersey: Princeton University, 56
    Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys, 20: 851-875
    Mellor G L. 1991. An Equation of State for numerical modeling of oceans and estuaries. J Atmos Ocean Tech, 8: 609-611
    Park S, Chu P C, Lee J H. 2011. Interannual-to-interdecadal variability of the Yellow Sea Cold Water Mass in 1967-2008: Characteristics and seasonal forcings. J Marine Syst, 87: 177-193
    Phillips N A. 1959. An example of non-linear computational instability. The Atmosphere and Sea in Motion, Rossby Memorial Volume, New York: Rockefeller Institute Press, 504-510
    Qiao Fangli, Chen Shunnan, Li Chenxin, et al. 1999. The study of wind, wave, current extreme parameters and climatic characters of the South China Sea. Mar Technol Soc J, 33: 61-68
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: distribution and application in a global ocean circulation model. Geophys Res Lett, 31: L11303
    Robert A J. 1966. The integration of a low-order spectral form of the primitive meteorological equations. J Meteorol Soc Jpn, 44: 237-244
    Schiller A, Brassington G B. 2011. Operational Oceanography in the 21st Century. Berlin: Springer, 745
    Shchepetkin A F, McWilliams J C. 2005. The Regional Ocean Modeling System: A split-explicit, free-surface, topography following coordinates ocean model. Ocean Modelling, 9: 347-404
    Smagorinsky J. 1963. General circulation experiments with the primitive equations. Mon The authorather Rev, 91: 99-164
    Su Jilang, Huang Daji. 1995. The circulation structure of the Yellow Sea Cold Water Mass. Oceanologia et Limnologia Sinica, 26: 1-7
    Sun Wen-Yih. 2010. Instability in leapfrog and forward-backward schemes. Mon The authorather Rev, 138: 1497-1501
    Sun Wen-Yih. 2011. Instability in leapfrog and forward-backward schemes Part II: Numerical simulations of dam break. Computers & Fluids, 45: 70-76
    Tian Yongxiang, Shen Tongli, Ge Xiaozhen, et al. 1995. A Course in Numerical Weather Forecast (in Chinese). Beijing: Meteorology Press of China, 472
    Wang Yonggang, Fang Guohong, Wei Zexun, et al. 2006. Interannual variation of the South China Sea circulation and its relation to El Niño, as seen from a variable grid global ocean model. J Geophys Res, 111: C11S-C14S
    Williams P D. 2009. A Proposed Modification to the Robert-Asselin time filter. Mon The authorather Rev, 137: 2538-2546
    Williams P D. 2011. The RAW filter: an improvement to the Robert-Asselin filter in semi-implicit integrations. Mon The authorather Rev, 139: 1996-2007
    Xia Changshui, Qiao Fangli, Yang Yongzeng, et al. 2006. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J Geophys Res, 111: C11S-C13S
    Xia Changshui, Qiao Fangli, Zhang Qinghua, et al. 2004. Numerical modeling of the quasi-global ocean circulation based on POM. J Hydrodynamics: Ser B, 16: 537-543
    Yang Yongzeng, Qiao Fangli, Zhao Wei, et al. 2004. MASNUM ocean wave model in spherical coordinate and its application. Acta Oceanologica Sinica, 27: 1-7
    Yu Yongzeng, Qiao Fangli, Yuan Yeli, et al. 1997. Numerical modeling of wind and waves for Typhoon Betty (8710). Acta Oceanologica Sinica, 16: 459-473
    Yuan Yeli, Pan Zengdi, Hua Feng, et al. 1991. LAGDF-WAM numerical wave model. Acta Oceanologica Sinica, 10: 483-488
    Yves M, Remy B, Annick P. 2008. Time splitting and linear stability of the slow part of the barotropic component. Ocean Modelling, 23: 73-81
    Zalesak S T. 1979. Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys, 31: 335-362
    Zhang Shuwen, Wang Qingye, Lu Y, et al. 2008. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998. Cont Shelf Res, 28 (3): 442-457
    Zhao Baoren. 1985. Front of the Yellow Sea Cold Water Mass and tidal mixing. Chinese Journal of Oceanology and Limnology, 27(4): 431-436
    Zhao Bin, Zhong Qing. 2009. An alternative method to leapfrog time differencing and its applications in an atmospheric general circulation model. Climatic Env Res, 14(1): 21-30
    Zhou Weidong. 2002. A proper time integration with split stepping for the explicit free-surface modeling. Adv Atmos Sci, 19(2): 255-265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1347) PDF downloads(1106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return