LIU Zenghong, XU Jianping, SUN Chaohui, WU Xiaofen. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats[J]. Acta Oceanologica Sinica, 2014, 33(11): 90-101. doi: 10.1007/s13131-014-0558-7
Citation: LIU Zenghong, XU Jianping, SUN Chaohui, WU Xiaofen. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats[J]. Acta Oceanologica Sinica, 2014, 33(11): 90-101. doi: 10.1007/s13131-014-0558-7

An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats

doi: 10.1007/s13131-014-0558-7
  • Received Date: 2012-10-29
  • Rev Recd Date: 2014-07-29
  • In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth (MLD), and the cooling of mixed layer temperature (MLT) were observed. The changes in mixed layer salinity (MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.
  • loading
  • Bender M A, Ginis I, Kurihara Y. 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J Geophys Res, 98(D12): 23245-23263
    Black P G. 1983. Ocean temperature changes induced by tropical cyclones [dissertation]. Pennsylvania: The Pennsylvania State University
    Black W J, Dickey T D. 2008. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J Geophys Res, 113: C08009
    Brink K H. 1989. Observation of the response of thermocline currents to hurricane. J Phys Oceanogr, 19: 1017-1022
    Brooks D A. 1983. The wake of hurricane Allen in the western Gulf of Mexico. J Phys Oceanogr, 13: 117-129
    Chen X, Pan D, He X, et al. 2012. Upper ocean responses to category 5 typhoon Megi in the western north Pacific.Acta Oceanologica Sinica,31:51-58
    D'Asaro E A. 2003. The ocean boundary layer below hurricane Dennis. J Phys Oceanogr, 33: 561-578
    D'Asaro E A, Sanford T B, Niiler P P, et al. 2007. Cold wake of hurricane Frances. Geophys Res Lett, 34: L15609
    Dickey T D, Frye J, McNeil D, et al. 1998. Upper-ocean temperature response to hurricane Felix as measured by the Bermuda Testbed Mooring. Mon Wea Rev, 126: 1195-1201
    Emanuel K A. 1986. An air-sea interaction theory for tropical cyclones: Part I. J Atmos Sci, 43: 585-604
    Emanuel K A. 1991. The theory of hurricanes.Annual Rev Fluid Mech, 23: 179-196
    Emanuel K A. 2001. Contribution of tropical cyclones to meridional heat transport by the oceans. J Geophys Res, 106(14): 14771-14781
    Geisler J E. 1970. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys Fluid Dyn, 1: 249-272
    Gill A E. 1984. On the behavior of internal waves in the wakes of storms. J Phys Oceanogr, 14: 1129-1151
    Ginis I. 2002. Hurricane-ocean interactions, tropical cyclone-ocean interactions, Chapter 3. In: Perrie W, ed. Atmosphere-Ocean Interactions. Advances in Fluid Mechanics Series, Volume 33. Boston, Massachusetts: WIT Press, 83-114
    Ginis I, Dikinov K Z. 1989. Modelling of the Typhoon Virginia (1978) forcing on the ocean. Meteor Hydrol, 7: 53-60
    Kara A B, Rochford P A, Hurlburt H E. 2000. An optimal definition for ocean mixed layer depth.J Geophys Res,105: 16803-16821
    Lin I I, Liu W T, Wu C C, et al. 2003. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys Res Letters, 30(3): 31
    Liu Zenghong, Xu Jianping, Zhu Bokang, et al. 2006. The upper ocean response to tropical cyclones in the northwestern Pacific during 2001-2004 by Argo data. Chinese Journal of Oceanology and Limnology (in Chinese), 25(2): 123-131
    Liu Z, Xu J, Zhu B, et al. 2007. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chin J Oceano Limnol, 25(2): 123-131
    Maneesha K, Murty V S N, Ravichandran M, et al. 2012. Upper ocean variability in the Bay of Bengal during the tropical cyclones of Nargis and Laila. Prog Oceanogr, 106: 49-61
    Mao Q, Chang S W, Pfeffer R L. 2000. Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon Wea Rev, 128:4058-4070
    Park J J, Kwon Y-O, Price J F. 2011. Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific. J Geophys Res, 116: C12025
    Price J F. 1981. Upper ocean response to a hurricane. J Phys Oceanogr, 11:153-175
    Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. J Phys Oceanogr, 24: 233-260
    Robertson E J. 2003.The upper ocean salinity response to tropical cyclones[dissertation]. Rhode Island: University of Rhode Island
    Sanford T B, Black P G, Haustein J R, et al. 1987. Ocean response to a hurricane Part I: observations. J Phys Oceanogr, 17(11): 2065-2083
    Shay L K, Black P G, Mariano A J, et al. 1992. Upper ocean response to Hurricane Gilbert. J Geophys Res, 97: 20227-20248
    Shay L K, Elsberry R L. 1987. Near-inertial ocean current response to hurricane Frederic. J Phys Oceanogr, 17:1249-1269
    Shay L K, Elsberry R L, Black P G. 1989. Vertical structure of the ocean current response to a hurricane. J Phys Oceanogr, 19: 649-669
    Stramma L, Cornillon P, Price J F. 1986. Satellite observations of sea surface cooling by hurricanes. J Geophys Res, 91: 5031-5035
    Sun Liang, Yang Yuanjian, Fu Yunfei. 2009. Impacts of typhoons on the Kuroshio large meander: observation evidences. Atmos Ocean Sci Lett (in Chinese), 2(1): 45-50
    Sun Liang, Yang Yuanjian, Xian Tao, et al. 2012. Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar Ecol Prog Ser (in Chinese), 404: 39-50
    Wang J-W, Han W, Sriver R L. 2012. Impact of tropical cyclones on the ocean heat budget in the Bay of Bengal during 1999: 1. Model configuration and evaluation. J Geophys Res, 117: C09020
    Yang Y J, Sun L, Liu Q, et al. 2010. The biophysical responses of the upper ocean to the typhoons Namtheun and Malou in 2004. Int J Remote Sens, 31(17): 4559-4568
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1898) PDF downloads(1155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return