FAN Zhisong, SHANG Zhenqi, ZHANG Shanwu, HU Ruijin, LIU Hailong. A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model[J]. Acta Oceanologica Sinica, 2015, 34(1): 11-22. doi: 10.1007/s13131-015-0591-1
Citation: FAN Zhisong, SHANG Zhenqi, ZHANG Shanwu, HU Ruijin, LIU Hailong. A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model[J]. Acta Oceanologica Sinica, 2015, 34(1): 11-22. doi: 10.1007/s13131-015-0591-1

A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model

doi: 10.1007/s13131-015-0591-1
  • Received Date: 2014-05-04
  • Rev Recd Date: 2014-09-10
  • Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior below the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial internal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numerical results of F-scheme by using WOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.
  • Alford M H, Cronin M F, Klymak J M. 2012. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the Northeast Pacific. J Phys Oceanogr, 42(6): 889-909
    Boyd T J, Luther d S, Knox R A, et al. 1993. High-frequency internal waves in the strongly sheared currents of the upper equatorial Pacific: Observations and a simple spectral model. J Geophys Res, 98(C10): 18089-18107
    Bryan F. 1987. Parameter sensitivity of primitive equation ocean general circulation models. J Phys Oceanogr, 17(7): 970-985
    Canuto V M, Howard A, Cheng Y, et al. 2001. Ocean turbulence. Part I: one point closure model, momentum and heat vertical diffusivities. J Phys Oceanogr, 31(6): 1413-1426
    Canuto V M, Howard A, Cheng Y, et al. 2002. Ocean turbulence. Part II: vertical diffusivities of momentum, heat, salt, mass and passive scalars. J Phys Oceanogr, 32: 240-264
    Canuto V M, Howard A, Cheng Y, et al. 2010. Ocean turbulence, III: new GISS vertical mixing scheme. Ocean Modelling, 34(3-4): 70-91
    Cunningham S A, Kanzow T, Rayner d, et al. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.58°N. Science, 317(5840): 935-938, doi: 10.1126/science.1141304
    danabasoglu G, Large W G, Briegleb B P. 2010. Climate impacts of parameterized Nordic Sea overflows. J Geophys Res, 115: C11005, doi: 10.1029/2010JC006243
    danabasoglu G, Yeager S G, Kwon Y-O, et al. 2012. Variability of the Atlantic meridional overturning circulation in CCSM4. J Climate, 25(15): 5153-5172
    d'Asaro E A, Perkins H. 1984. A near-inertial internal wave spectrum for the Sargasso Sea in late summer. J Phys Oceanogr, 14(3): 489-505
    Eriksen C C. 1985. Some characteristics of internal gravity waves in the equatorial Pacific. J Geophys Res, 90(C4): 7243-7255
    Fan Zhisong. 2011. Is the small-scale turbulence an exclusive breaking product of oceanic internal waves. Acta Oceanologica Sinica, 30(6): 1-11
    Fan Zhisong, Fang Xinhua. 1998a. Effect of horizontal component of rotation vector on equations for oceanic internal waves. Haiyang Xuebao (in Chinese), 20(3): 129-133
    Fan Zhisong, Fang Xinhua. 1998b. An asymptotic solution of equations for oceanic internal waves under considering horizontal component of rotation vector. Haiyang Xuebao (in Chinese), 20(4): 1-8
    Fan Zhisong, Fang Xinhua. 1999. A possible mechanism of ocean finestructure. Part I: Energy and coherence. Journal of Ocean University of Qingdao, 29(2): 207-214
    Fan Zhisong, Fang Xinhua. 2000. A possible mechanism of ocean finestructure. Part III: Estimation of the kinetic energy dissipation in mixing. Journal of Ocean University of Qingdao, 30(1): 7-14
    Fan Zhisong, Fang Xinhua, Xu Qichun. 1999. A possible mechanism of ocean finestructure. Part II: Shear and strain. Journal of Ocean University of Qingdao, 29(3): 405-414
    Fang Xinhua, Wang Jingming. 1984. The effect of water compressibility on oceanic internal waves. Journal of Shandong College of Oceanology (in Chinese), 14(3): 13-18
    Fu L L. 1981. Observations and models of inertial waves in the deep ocean. Rev Geophys Space Phys, 19(1): 141-170
    Garrett C J R, Munk W H. 1972. Space-time scales of internal waves. Geophys. Fluid dyn, 3(1): 225-264
    Gregg M C, d'Asaro E A, Shay T J, et al. 1986. Observations of persistent mixing and near-inertial internal waves. J Phys Oceanogr, 16(5): 856-885
    Holloway G. 1983. A conjecture relating oceanic internal waves and small-scale processes. Atmos Oceans, 21(1): 107-122
    Jochum M, Briegleb B P, danabasoglu G, et al. 2013. The impact of oceanic near-inertial waves on climate. J Climate, 26(9): 2833-2844
    Kuhlbrodt T, Griesel A, Montoya M, et al. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys, 45: RG2001, doi: 10.1029/2004RG000166
    Kunze E, Sanford T B. 1996. Abyssal mixing: Where it is not. J Phys Oceanogr, 26(10): 2286-2296
    Kunze E, Briscoe M G, Williams III A J. 1990. Interpreting shear and strain fine structure from a neutrally buoyant float. J Geophys Res, 95(C10): 18111-18125
    Kunze E, Williams III A J, Briscoe M G. 1990. Observations of shear and vertical stability from a neutrally buoyant float. J Geophys Res, 95(C10): 18127-18142
    Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered AdCP shear and CTd strain profiles. J Phys Oceanogr, 36(8): 1553-1576
    Large W G, McWilliams J C, doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys, 32(4): 363-403
    Ledwell J R, Montgomery E T, Polzin K L, et al. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403(6766): 179-182
    Ledwell J R, Wilson A J, Law C S. 1998. Mixing of a tracer released in the pycnocline of a subtropical gyre. J Geophys Res, 103(C10): 21499-21529
    Lien R-C, Gregg M C. 2001. Observations of turbulence in a tidal beam and across a coastal ridge. J Geophys Res, 106(C3): 4575-4591
    Liu Hailong, Yu Yongqiang, Li Ning, et al. 2004. Reference Manual for LASG/IAP Climate System Ocean Model (LICOM1.0) (in Chinese). Beijing: Science Press, 107
    Marchal O, Jackson C, Nilsson J, et al. 2007. Buoyancy-driven flow and nature of vertical mixing in a zonally averaged model. Ocean Circulation: Mechanisms and Impacts - Past and Future Changes of Meridional Overturning, doi: 10.1029/173GM05
    Müller P. 1984. Small scale vortical motions. In: Müller P, Pujalet R, eds. Interna??????扩牴?圠桗慡汶敥湳??????呭慡汬汬攭祓???摥???慲换?楬湥湮潣湥???????づ????即瀠慯瑦椠慴汨?愠渘摁?瑡攠浈灵潬物慫汯?瘠慡爠楈慡扷楡汩楩瑡祮?潗晩?杴汥潲戠慗汯?潫捳敨慯湰?洠楈硯楮湯杬?楬湵昺攠版牡敷摡?晩牡潮洠??牳杴潩?灵牴潥映楯汦攠獇???敨潹灳桩祣獳?删攲猴??攲琶琲?????…????????摲漠楐???ぬ??ひ???水?????づ??????扊爮?圱甹??椮砠楔湨???楗湅杘?婳桰慥潣??創業献攠牊?升??数瑨?慳氠????ㄠ???千攱愩猺漠渴愷氹?愵渰搰?獢灲愾瑍椦愣氲‵瘲愻牬楬慥瑲椠潐測猠?潩晥?匠潒甭瑃栬攠牗湩?佬捩敡慭湳?摒椮愠瀱礹挸游愮氠?浳楴硩業湡杴?晳爠潯浦??牯杴潥?灴物潡晬椠汶楯湲杴?晣汩潴慹琠獡??乳慭瑡畬牬攠??敡潬獥捳椠????????????????扐牨?坳甠湏獣捥桡?????攠爱爸愨爳椩?删?‰㈱?????噢敲爾瑍極据慫氠?洬椠硗極湮杳??攠湃攮爠朱礹?愸渮搠?瑢桹敳?条敬渠敲牥慣汩?捥楳爠捉畉氺愠瑅楮潥湲?潥晴?瑣桳攠?潦挠整慩湤獡???湮湤甠?剩敮癤??汩畸楩摮??攠捤桥????????????????I, 45(12): 1977-2010
    Nasmyth P. 1970. Oceanic turbulence [dissertation]. Vancouver, Canada: Institute of Oceanography, University of British Columbia, 69
    Nilsson J, Broström G, Walin G. 2003. The thermohaline circulation and vertical mixing: does weaker density stratification give stronger overturning? J Phys Oceanogr, 33(12): 2781-2795
    Oakey N S. 1982. determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr, 12(3): 256-271
    Ozgokmen T M, Molemaker M J, McWilliams J C, et al. 2012. dynamics and observations of submesoscale oceanic processes (016 session). 2012 Ocean Sciences Meeting, Salt Lake City, USA
    Pinkel R, Sherman J, Smith J, et al. 1991. Strain: observations of the vertical gradient of insopycnal vertical displacement. J Phys Oceanogr, 21(4): 527-540
    Polzin K L, Toole J M, Ledwell J R, et al. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276(5309): 93-96
    Scott J R, Marotzke J. 2002. The location of diapycnal mixing and the meridional overturning circulation. J Phys Oceanogr, 32(12): 3578-3595
    Sherman J T, Pinkel R. 1991. Estimates of the vertical wavenumber-frequency spectra of vertical shear and strain. J Phys Oceanogr, 21(2): 292-303
    Thorpe S A. 1971. Experiments on the instability of stratified shear flows: miscible fluids. J Fluid Mech, 46(2): 299-319
    Thorpe S A. 1973. Experiments on instability and turbulence in a stratified shear flow. J Fluid Mech, 61(4): 73
  • Relative Articles

  • Cited by

    Periodical cited type(1)

    1. XiaoKai Hu, GuangHong Liao, ZhiSong Fan, et al. Impacts of inertial internal wave breaking mixing parameterization on a global ocean model. Progress in Oceanography, 2023, 212: 102997. doi:10.1016/j.pocean.2023.102997

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-010510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.3 %FULLTEXT: 30.3 %META: 68.6 %META: 68.6 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area DistributionChina: 38.3 %China: 38.3 %Russian Federation: 5.6 %Russian Federation: 5.6 %Spain: 1.0 %Spain: 1.0 %United States: 55.1 %United States: 55.1 %ChinaRussian FederationSpainUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1713) PDF downloads(1393) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return