Citation: | HAN Hongwei, LI Zhijun, HUANG Wenfeng, LU Peng, LEI Ruibo. The uniaxial compressive strength of the Arctic summer sea ice[J]. Acta Oceanologica Sinica, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7 |
Cole d M. 1987. Strain rate and grain size effects in ice. Journal of Glaciology, 33(115): 274-280
|
Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35: L01703, doi: 10.1029/2007GL031972
|
Cox G F N, Weeks W F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29(102): 306-316
|
dutta P K, Cole d M, Schulson E M, et al. 2003. A fracture study of ice under high strain rate loading. In: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA
|
Eicken H, Ackley S F, Richter-Menge J A, et al. 1991. Is the strength of sea ice related to its chlorophyll content?. Polar Biology, 11(5): 347-350
|
Holland M M, Bitz C M, Tremblay B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33: L23503, doi: 10.1029/2006GL028024
|
Huang Wenfeng, Lei Ruibo, Ilkka M, et al. 2013. The physical structures of snow and sea ice in the Arctic section of 150°-180° W during the summer of 2010. Acta Oceanologica Sinica, 32(5): 57-67
|
Hunke E C, Notz d, Turner A K, et al. 2011. The multiphase physics of sea ice: a review for model developers. The Cryosphere, 5(4): 989-1009
|
Jones S J. 1997. High strain-rate compression tests on ice. The Journal of Physical Chemistry: B, 101(32): 6099-6101
|
Kermani M, Farzaneh M, Gagnon R. 2007. Compressive strength of atmospheric ice. Cold Regions Science and Technology, 49(3): 195-205
|
Kondo H, Otsuka N, Takeuchi T, et al. 2004. Uniaxial compressive strength of sea ice along the coast of Hokkaido and Sakhalin. In: Proceedings of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok, Russia
|
Leppäranta M, Manninen T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Internal Rep 88-2. Helsinki: Finnish Institute for Marine Research
|
Li Zhijun, Zhang Limin, Lu Peng, et al. 2011. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai Sea. Science China: Technological Sciences, 54(9): 2429-2436
|
Liu M, Kronbak J. 2010. The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. Journal of Transport Geography, 18(3): 434-444
|
Moslet P O. 2007. Field testing of uniaxial compression strength of columnar sea ice. Cold Regions Science and Technology, 48(1): 1-14
|
Rodrigues J. 2008. The rapid decline of the sea ice in the Russian Arctic. Cold Regions Science and Technology, 54(2): 124-142
|
Schulson E M. 2001. Brittle failure of ice. Engineering Fracture Mechanics, 68(17): 1839-1887
|
Schwarz J, Frederking R M W, Gavrillo V, et al. 1981. Standardized testing methods for measuring mechanical properties of ice. Cold Regions Science and Technology, 4(3): 245-253
|
Sinha N K. 1982. Constant strain and stress-rate compressive strength of columnar-grained ice. Journal of Materials Science, 17(3): 785-802
|
Sinha N K. 1984. Uniaxial compressive strength of first-year and multi-year sea ice. Canadian Journal of Civil Engineering, 11(1): 82-91
|
Sinha N K. 1988. Experiments on anisotropic and rate-sensitive strain ratio and modulus of columnar-grained ice. Journal of Offshore Mechanics and Arctic Engineering, 111(4): 354-360
|
Sjölind S G. 1987. A constitutive model for ice as a damaging visco-elastic material. Cold Regions Science and Technology, 14(3): 247-262
|
Sodhi d S, Takeuchi T, Nakazawa N, et al. 1998. Medium-scale indentation tests on sea ice at various speeds. Cold Regions Science and Technology, 28(3): 161-182
|
Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34: L09501, doi: 10.1029/2007GL029703
|
Timco G W, Frederking R M W. 1990. Compressive strength of sea ice sheets. Cold Regions Science and Technology, 17(3): 227-240
|
Timco G W, Frederking R M W. 1996. A review of sea ice density. Cold Regions Science and Technology, 24(1): 1-6
|
Timco G W, Weeks W F. 2010. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60(2): 107-129
|
Vancoppenolle M, Fichefet T, Goosse H. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice: 2. Importance of sea ice salinity variations. Ocean Modelling, 27(1): 54-69
|
Vancoppenolle M, Fichefet T, Goosse H, et al. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice: 1. Model description and validation. Ocean Modelling, 27(1): 33-53
|
Verny J, Grigentin C. 2009. Container shipping on the Northern Sea Route. International Journal of Production Economics, 122(1): 107-117
|
Yue Qianjin, Ren Xiaohui, Chen Jubin. 2005. The test and mechanism investigation on ductile-brittle transition of sea ice. Journal of Basic Science and Engineering (in Chinese), 13(1): 35-42
|
Zhang J, Lindsay R, Steele M, et al. 2008. What drove the dramatic retreat of arctic sea ice during summer 2007?. Geophysical Research Letters, 35: L11505, doi: 10.1029/2008GL034005
|
1. | Tongqiang Yu, Kun Liu, Ge (George) Wang, et al. A tri-axial ice model for simulating ice-stiffened panel impact: Experiments and numerical modeling. Marine Structures, 2023, 88: 103358. doi:10.1016/j.marstruc.2022.103358 | |
2. | Dingding Meng, Xiaodong Chen, Zhijun Wei, et al. Prediction of flexural and uniaxial compressive strengths of sea ice with optimized recurrent neural network. Ocean Engineering, 2023, 288: 115921. doi:10.1016/j.oceaneng.2023.115921 | |
3. | Huimin Han, Li Wei, Nizar Faisal Alkayem, et al. Embedded Ultrasonic Inspection on the Mechanical Properties of Cold Region Ice under Varying Temperatures. Sensors, 2023, 23(13): 6045. doi:10.3390/s23136045 | |
4. | Chunyang Wang, Duanfeng Han, Qing Wang, et al. Study of elastoplastic deformation and crack evolution mechanism of single-crystal ice during uniaxial compression using 3D digital image correlation. Engineering Fracture Mechanics, 2023, 293: 109712. doi:10.1016/j.engfracmech.2023.109712 | |
5. | Yujia Zhang, Zuoqin Qian, Song Lv, et al. Experimental Investigation of Uniaxial Compressive Strength of Distilled Water Ice at Different Growth Temperatures. Water, 2022, 14(24): 4079. doi:10.3390/w14244079 | |
6. | Sebastian Skatulla, Riesna R. Audh, Andrea Cook, et al. Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line. The Cryosphere, 2022, 16(7): 2899. doi:10.5194/tc-16-2899-2022 | |
7. | Ryan S. Potter, Joseph M. Cammack, Christopher H. Braithwaite, et al. A study of the compressive mechanical properties of defect-free, porous and sintered water-ice at low and high strain rates. Icarus, 2020, 351: 113940. doi:10.1016/j.icarus.2020.113940 | |
8. | Xiaowei Cao, Peng Lu, Ruibo Lei, et al. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018. Acta Oceanologica Sinica, 2020, 39(9): 25. doi:10.1007/s13131-020-1645-6 | |
9. | Yanlong Li, Gaowei Hu, Nengyou Wu, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea. Acta Oceanologica Sinica, 2019, 38(3): 114. doi:10.1007/s13131-019-1404-8 | |
10. | Ryan S. Potter, Joseph M. Cammack, Christopher H. Braithwaite, et al. Problems Associated with Making Mechanical Measurements on Water–Ice at Quasistatic and Dynamic Strain Rates. Journal of Dynamic Behavior of Materials, 2019, 5(3): 198. doi:10.1007/s40870-019-00202-1 | |
11. | Qingkai Wang, Zhijun Li, Peng Lu, et al. In Situ Experimental Study of the Friction of Sea Ice and Steel on Sea Ice. Applied Sciences, 2018, 8(5): 675. doi:10.3390/app8050675 |